SCIENTIFIC DATA SYSTEMS, INC.

Standard Cased Hole CPF Maintenance Panel

Maintenance Manual

This document contains proprietary information. Copyright © 2011 Scientific Data Systems, Inc. All rights reserved.

STANDARD CASED HOLE CPF MAINTENANCE

Maintenance Manual

This document contains proprietary information. Copyright © 2011 Scientific Data Systems, Inc. All rights reserved. 3401 Bacor Road Houston, Texas 77084, USA Phone: 1-281-398-1612 E-mail: sds.info@warriorsystem.com Website: www.warriorsystem.com Created March 18, 2024 Windows® is a registered trademark of Microsoft Corporation in the United States and/or other countries. All other product names are trademarks of their respective companies.

Table of Contents

TA	BLE OF CONTENTS	3
IN	TRODUCTION	
IN	STALLATION AND SAFETY	14
`	our safety and the safety of others is very impo	o rtant. 14
1	PANELS HOOKUPS	
	1.1 Interface Cable Wiring	
	Fig 1.2 CPF-DTLS-Plotter-CPU	
	Fig 1.4 CPF-DTLS-Shooting-Plotter-CPU	
2	TELA BOARD	22
	2.1 TELA R6	
	2.2 TELA R7	
	2.3 TELAH R5	
	Fig 2.1 Schematic Telah R5 Fig 2.2 Telah R5 board layout	
	1 ig 2.2 Telah Re o'da a layout	······································
	Fig 2.1 Schematic Tela R8	Error! Bookmark not defined. Error! Bookmark not defined.
3	Fig 2.1 Schematic Tela R8 Fig 2.2 Tela R7 board layout	Error! Bookmark not defined. Error! Bookmark not defined. 26
3 3	Fig 2.1 Schematic Tela R8 Fig 2.2 Tela R7 board layout PRE-RELAYS BOARD 8.1 Circuit Description	Error! Bookmark not defined. Error! Bookmark not defined. 26
3 (Fig 2.1 Schematic Tela R8 H Fig 2.2 Tela R7 board layout H PRE-RELAYS BOARD H 8.1 Circuit Description 3.1.1Line Input Fig 3.1 schematic Prevalaus P5	Error! Bookmark not defined. Error! Bookmark not defined. 26
3	Fig 2.1 Schematic Tela R8 H Fig 2.2 Tela R7 board layout H PRE-RELAYS BOARD H 8.1 Circuit Description Solution 3.1.1Line Input H Fig 3.1 schematic Prerelays R5 F Fig 3.2 Pre-Relay R5 board layout H	Error! Bookmark not defined. Error! Bookmark not defined. 26 26 29 30
3 3 4	Fig 2.1 Schematic Tela R8 H Fig 2.2 Tela R7 board layout H PRE-RELAYS BOARD H 8.1 Circuit Description State 3.1.1Line Input H Fig 3.1 schematic Prerelays R5 H Fig 3.2 Pre-Relay R5 board layout H APPLIED FREE POINT BOARD H	Error! Bookmark not defined. Error! Bookmark not defined. 26 26 29 30 32
3 3 4	Fig 2.1 Schematic Tela R8 H Fig 2.2 Tela R7 board layout H PRE-RELAYS BOARD H 8.1 Circuit Description State 3.1.1Line Input H Fig 3.1 schematic Prerelays R5 H Fig 3.2 Pre-Relay R5 board layout H APPLIED FREE POINT BOARD H 1 Circuit Description	Error! Bookmark not defined. Error! Bookmark not defined. 26 26 29 30 32 32
3 3 4	Fig 2.1 Schematic Tela R8 H Fig 2.2 Tela R7 board layout H PRE-RELAYS BOARD H 8.1 Circuit Description 3.1.1Line Input Fig 3.1 schematic Prerelays R5 Fig 3.2 Pre-Relay R5 board layout APPLIED FREE POINT BOARD H 4.1.1 Line Input Line Input	Error! Bookmark not defined. Error! Bookmark not defined. 26 26 29 30 30 32 32
3 (4	Fig 2.1 Schematic Tela R8 I Fig 2.2 Tela R7 board layout I PRE-RELAYS BOARD I 8.1 Circuit Description 3.1.1Line Input Fig 3.1 schematic Prerelays R5 Fig 3.2 Pre-Relay R5 board layout APPLIED FREE POINT BOARD I 1.1 Circuit Description 4.1.1 Line Input 4.1.2 Line Driver and signal measurement 4.1.3 Adjustments	Error! Bookmark not defined. Error! Bookmark not defined. 26 26 29 30 30 32 32 32 32 32 33
3 4 2	Fig 2.1 Schematic Tela R8 I Fig 2.2 Tela R7 board layout I PRE-RELAYS BOARD I 8.1 Circuit Description 3.1.1Line Input Fig 3.1 schematic Prerelays R5 Fig 3.1 schematic Prerelays R5 Fig 3.2 Pre-Relay R5 board layout I APPLIED FREE POINT BOARD 4.1.1 Line Input 4.1.1 Line Input 4.1.2 Line Driver and signal measurement 4.1.3 Adjustments Fig 4.1 Schematic Applied Free point R7 Fig 4.1 Schematic Applied Free point R7 Fig 4.2 Applied Free point R7	Error! Bookmark not defined. Error! Bookmark not defined.
3 4 2	Fig 2.1 Schematic Tela R8 I Fig 2.2 Tela R7 board layout I PRE-RELAYS BOARD I S.1 Circuit Description 3.1.1Line Input Fig 3.1 schematic Prerelays R5 Fig 3.2 Pre-Relay R5 board layout APPLIED FREE POINT BOARD I 4.1.1 Line Input 4.1.2 Line Driver and signal measurement 4.1.3 Adjustments Fig 4.1 Schematic Applied Free point R7 Fig 4.2 Applied Free point R7 board layout I POWER SUPPLY AUXILIARY BOARD I	Error! Bookmark not defined. Error! Bookmark not defined. 26 26 29 30 30 32 32 32 33 35 35 36 37
3 4 5	Fig 2.1 Schematic Tela R8 I Fig 2.2 Tela R7 board layout I PRE-RELAYS BOARD I PRE-RELAYS BOARD I PRE-RELAYS BOARD I S.1 Circuit Description I 3.1.1Line Input Fig 3.1 schematic Prerelays R5 Fig 3.2 Pre-Relay R5 board layout I APPLIED FREE POINT BOARD I 4.1 Circuit Description I 4.1.1 Line Input I 4.1.2 Line Driver and signal measurement. I 4.1.3 Adjustments. Fig 4.1 Schematic Applied Free point R7 Fig 4.2 Applied Free point R7 board layout FOWER SUPPLY AUXILIARY BOARD 5.1 Circuit Description PSALLY P2	Error! Bookmark not defined. Error! Bookmark not defined.
3 4 5	Fig 2.1 Schematic Tela R8 I Fig 2.2 Tela R7 board layout I PRE-RELAYS BOARD I S.1 Circuit Description I 3.1.1Line Input I Fig 3.1 schematic Prerelays R5 I Fig 3.2 Pre-Relay R5 board layout I APPLIED FREE POINT BOARD I 1.1 Circuit Description I 4.1.1 Line Input I 4.1.2 Line Driver and signal measurement I 4.1.3 Adjustments Fig 4.1 Schematic Applied Free point R7 Fig 4.2 Applied Free point R7 board layout I POWER SUPPLY AUXILIARY BOARD I 5.1 Circuit Description PSAUX R2 I 5.1.1 TPS Output and Polarity Control I	Error! Bookmark not defined. Error! Bookmark not defined.

5.1.2 Adjustments and Jumpers 5.1.3 Voltage and Current Measurement	
5.2 PSDXDR7 BOARD	
5.2.1New Features	
5.2.2 General Description Fig 5.1 Schematic PSDXD R7	
Fig 5.2 PSXD R7 board layout	
Fig 5.3 Schematic PSDXD R2 Fig 5.4 PSXD R2 board layout	
6 TOOL POWER SUPPLY AND AG	CSW349
6.1 Circuit Description TPSD	
6.2 Circuit Description ACSW3	
Fig 6.1 Schematic TPSD R10	
Fig 6.2 TPSD R10 board layout	
Fig 6.4 ACSW6 Board layout	
7 ANALOG SWITCH INTERFACE	BOARD55
7I ANASW R16	55
7i.1 Circuit Description	
7i.1.1 Line Input	
7i.1.2 Audio Amplifier 7i.1.3 Wellhead Pressure and aux channel	
7i.1.4 Baker Mod	
Fig 7i.1 Schematic Analog Switch ANASW R16 Fig 7i 2 Analog Switch ANASW R16 board layout	
7II ANASW R20	60
7ii 1 Circuit Description	60
7ii.1.1 Line Input	
7ii.1.2 Audio Amplifier	
Fig 7ii.1 Schematic Analog Switch ANASW R20	
Eig Zij 2 Apolog Switch ANASM/ P20 boord lovout	
8 CCL BOARD	
8.1 Circuit Description	65
8.2 PSoC Block Diagram	66
8.2.1PSoC Pin Out	
Fig 8.2 Schematic CCLVF R3	
Fig 8.3 CCLVF R3 board layout	
9 I CBL1 R6 BOARD	71

9i.1	Circuit Description	71
9i.1.1	LINEB	
9.1.2 Fig.0i	LINESON	
г ід 91. Fia 9 i	2 Schematic CBL1D R6	
Fig 9i	.3 CBL1 R6 board layout	
9ii.1	Circuit Description	
9ii.1.1	LINEB "Sync "	
9ii.1.2	2 LINESON " Sonic "	
9ii.1.3	LINE AT "Aux"	
FIG 91 Fig 9i	i 3 CRI 1 R13 hoard layout	
10 C	RI 2 ROARD	87
10 1	Circuit Description	
IU. I	Since Pulse Detection	
10.1.1	Trouble Shooting Hinte	
10.2		
10.2.1 Fig.10	Sync. Puise Detection	
Fig 10).2 CBL2 R14 board layout	
11 A	UDIO BOARD	91
	Oiner it Deservicien	01
11.1		
11.2	Board Configuration	
Fig 11	1.1 Schematic Audio R5	
Fig 11	2.2 Audio Board R5 board layout	
12 M	TT BOARD	95
12 1	circuit Description	95
Fia 12	2.1 MTT R2 board lavout	
Fig 12	2.2 Schematic MTT R2	
13 U	SB44 BOARD	
12 1	Circuit Deceription	00
13.1		
13.1.1	Analog Channels	
13.1.2	Line Tension Input	
13.1.4	USB Operation	
Fig 13	3.1 Block diagram USB44 Board	
Fig 13 Fig 13	3.3 USB44 R7 board lavout	
11 0		107
14 D	SPAUA BUAKU	107
14.1	DSPAUX R4	
Fig 14	4.1 Schematic DSPAUX R4	
Fig 14	4.2 DSPAUX R4 board layout	

15	DSP BOARD	113
15	5.1 Series R3 Boards	113
15	5.2 Series R4Boards	113
	Fig 15.1 Schematic DSP R10	
	Fig 15.2 DSP R11 board layout	
16	USBHUB BOARD	121
1	Fig 16.2 USB2 R18 Hub board layout	125
17	SIMULATOR BOX	127
	FIG: 17.1 Simulator	
I	FIG: 17.2 Simulator Controls	128
1	FIG: 17.3 Simulator tool files	
1	FIG: 17.5 Outputs	
17	1 Circuit Description	130
17	72 SIMULATOP Hookups	121
17	FIG: 17.6 USR SIM R2 heard Involt	131
1	FIG: 17.7 USB SIM R2 Schematic	
18	RECORDER	135
10	1 Marrier Line Signal Pecerder Service	125
IC	5.1 VValuat Line Signal Recorder Service	135
1	FIG: 18.2 Service Import	
Ĺ	FIG: 18.3 Import Recorder service	136
	FIG: 18.4 Recorder FIG: 18.5 Set up Signal Recorder	
	FIG: 18.6 Save the Recorder signal	
18	2 Converting Recordings to SDS Simulator Box Files	138
	FIG: 18.7 SIM convert	
l	FIG: 18.8 Open	139
1	FIG: 18.9 Save As	
19	CPF WIRING DIAGRAMS	140
	Fig 19.1 CPF Block Diagram	149
	Fig 19.2 CPF Wiring Diagram	
1	-ig 19.4 CPF Front Panel Wiring Diagram	155 156
	Fig 19.5 CPF Flow Chart	
	Fig 19.6 CPF Line Out Routing	158
20	WIRE LIST FOR STIP-F USB	161
B	ACK PANEL ASSEMBLY	161
	JAC - AC Input	
L	F1 - Main Power (3 Amp)	
L	F2 - Encoder Power (.5 Amp)	161

J6 - Tension Input	
(H)J6 - Tension Input	
WHP1 - Well Head Pressure #1 {Not Normally Installed}	
WHP2 - Well Head Pressure #2 {Not Normally Installed}	
J7 - Line UHF Connector	
J12 - Line BNC Connector	
J16 - CCL Passive Input BNC	
J8 - Encoder Input	
(H)J8 - Encoder Input	
AUXI - LLM or -10 to +10 Analog Signal	
AUX4 - Auxiliary Inputs	
FN2 - Rear Fan	
Тор KS232	
Milale KS252	
HUB J9 - To USB44	
HUB J10 - To DSP	
HUB J1 - Sondex Ultralink	
HUB J15 J4 J2 - Spare	
HUB J7 - Hub Power	
HUB J8 - FacePlate USB	
HUB J16 - RS232	
HUB J18 – RS485	
(B) AUX5 -PFC Input	
(H) J1 -Extermal Power	
Sondex Ultralink Wiring	
SDX J5 - Sondex USB	
SDX J1	
SDX_SKT1 - Sondex Signal	
SDX_J12 - Sondex DC Supply Power	
HORIZONTAL PLATE ASSEMBLY	166
	166
IDI I60 - AC Power to DC Sunnlies	
T1 - Tool Power Transformer	167
R1 - 150 Ohm Termination	167
R2 - 150 Ohm Termination	167
(H)L1 -35mh.	
C1- 320uf @ 450 VDC	
TPSD - Tool Power Supply Regulator	168
1PSD - J1	
TPSD - J2	
TPSD - J5	
11 SJ - JJ Hoat Sink _ Λ1	
Fan #3 - Hoat Sink Fan	
	160
VERIUAL FLAIE ASSEIVIDLI	108
P60 - AC Power to DC Supplies	
<i>TB3</i>	
R3 - 50 Ohm	
PSI - (+)5 Volt Supply	
PS2 - (-)15V Supply	

PS3 - (+)15V Supply	
CARD CAGE ASSEMBLY	
CC1 – TELA	
CC2 – PRELAYS	
CC3 -Line Aux (Not Installed)	
CC3-7	
CC6-11	
<i>I2CInit=22=04</i>	
CC4 - SPARE	
CC5 – SPARE	
CC6 - PSXD	
BLACK	
CC7 - ANASW	
CC8 - CCLVF	
<i>CC9 - CBL1D</i>	
CC10 - CBL02	
CC10-18	
CC14-32	
WHITE	
WHITE	
CC11 – AUDIO	
WHITE	
CC11-8	176
CC14-3	
WHITE	176
CC12 -MTT/AUX	176
WHITE	176
CC12-43	176
CC11-21	176
CC12-21	176
CC13 - USR44	
CC14 = DSP-AUX	
CC15-SDSDSP	179
DSP 12	
DSP 15	179
141 - AC Power	
<i>I</i> 41-1	179
TR1-3R	
RIIIF	
{\$1_1}	179
Switched Neutral	
142 - Voltage Meters and Controls Power	180
I43-IISR Face Plate	180
145 - Voltage Control Pots	180
	101
P41 - AC Power	
P41-1	
<i>S1-1</i>	
{LP1-1} {FN1-1}	
BLUE	
<i>{TB1-3}</i>	
Switched Neutral	
S1 - AC Power Switch	

<i>S1-1</i>	
<i>S1-1</i>	
{LP1-1} {FN1-1}	
BLUE	
{ <i>TB1-3</i> }	
Switched Neutral	
LP1 - AC Power Indicator	
LP1-1	
51-1 EN1 1	
RI ACK	
{P41-1}	
FN1 - Facenlate Fan	181
P42 - Voltage Meters and Controls	
P42-1	
<i>S</i> 3-2	
{ <i>CC</i> 6-29}	
WHITE	
High -> POS, GND -> NEG	
S2 - Tool Power Switch	
LP2 - Tool Power Switch Indicator	
S3 - Auto / Manual Polarity Switch	
VM - Panel Voltage Meter (Old Style)	
CM - Panel Current Meter (Old Style)	
VM - Panel Voltage Meter (Rea Segment Style)	
<i>LP3</i> Lina Enable Lamp	
147 - Audio Jack	
P43-USB Faceplate Connector {OLD}	
P45 - Voltage Control Pots	
R4- Negative Voltage Adjust	
R5- Positive Voltage Adjust	
(B)P65 - PFC Switch	
(B)S4 - PFC Switch	
21 CHECKS-OUT PROCEDURE	
A Denal Information	105
A. Panel mormation	
B. Check Power Supplies voltages on card con	nectors 186
C Sondoy I Iltralink Board Dro Wiring	196
C. Solidex Oldalitik Doald Fle-Willing	
D. USBHUB-R13 Pre-Check and USBHUB	
Fig. D.1 Universal Serial Bus Controllers	
F USB11 Checks	180
Fig. E.1 DAMOFCI Fig. F.2 Surface Tension Calibration	
Fig. E.2 Surface Tension Calibration	
Fig. E.4 CYSTD Low Values	
Fig. E.5 CYSTD Low Values	
Fig. E.6 Halliburton Surface Tension Calibration	
F DSPALIX and SDSDSP Checks	196
Гıg. Г.1 DSFAUA Aujusimeni	

G. PSXD-R2 or PSXD-R7 - PRELAYS-R5 - TPSD-R6	197
Fig. G.1 Line Termination Control	197
G 1. PSXD-R2 - PRELAYS-R5 – TPSD-R9	198
<i>G</i> 2. PSXD-R7 and TPSD-R9	199
Fig. G2.1 Power Control Configuration	
Fig. G2.2 Power Calabration	201
H. ANASW-R17	202
Fig. H.1 Service Editor	
Fig. H.2 Service Editor Add Control	
	204
Fig. 11 Sample Log Collars Service	204
Fig. 1.1 Sample Log Collars Service	205
li CBI 1 D6 and CBI 02	205
Fig. Ji.1 CBL1-Test Service 1Khz .5Vpp.	
Fig. Ji.2 CBLI-Test Service 1Khz .5Vpp 50% Panel Control	
Fig. JI.3 CBLI-Test Service IKhz .5 Vpp 25% Panel Control	
Fig. J.4 CBLI-Test Service 2Khz .5Vpp	
Fig. J.S CBL1-1est Service 500nz .Svpp	
Fig. J.O CBLI-Test Service TKnz .5 Vpp bana Pass	
Fig. Ji./ CDL1-1est Service 2KHZ .J V pp Dana Pass	
Fig. Ji 0 CBL1 Tast Service 15 kbz. 5Vpp Dunu Fuss	
Fig. Ji 10 CBI 1-Test Service 20 khz 5Vnn	
Fig. Ji. 10 CDLI-Test Service 5 kbz 5 Vpp	
Fig. Ji 12 CRL1-Test Service 15 khz 5Vnn Rand Pass	218
Fig. Ji 13 CRL1-Test Service 30 khz. 5Vnn Band Pass	219
Fig. Ji 14 CRL1-Test Service 5 khz. 5Vnn Band Pass	220
Fig. Ji 15 CBL1-Test Service 1 Khz 5Vnn.	
Fig. Ji. 16 CBL1-Test Service 1Khz .5Vpp Pre Filter Setting 8	
$III \cap CBI = 1 B = 13 and CBI = 02$	223
	ZZJ
Fig. Jii. I CBL1 Test1 Service 1Khz 500mv pp	
Fig Ju.2 Sync Suder	
Fig Jil. 5 Sonic Gain Silder	
Fig Ju. 4 Sonic Fre Filler Rudio Dullon Fig Jui 5 200 2k Hz frequency sweep $\Omega = 1$ High Pass	
Fig Ju. 5 200-2k Hz frequency sweep Q^{-1} High 1 uss	
Fig Jul 200-2k Hz frequency sweep $Q = 1$ bund 1 uss	220
Fig. Jii 8 200-2k Hz frequency sweep $Q = 2$ Rand Pass	228
Fig. Jii 9 5k -20k Hz frequency sweep $Q = 2$ High Pass	229
Fig. Jii. 10 5k - 20k Hz frequency sweep $O=2$ Band Pass	
Fig Jii.11 Default settings	
CBL1 R13 Aux Chanel test	231
Fig. Jii. 12 Slider Sween	
Fig Jii.13 Frequency Sweep 2 kHz -100 kHz	
Fig Jii.14 Stage settings	
Fig Jii.15 Stage settings changed @ 20k Hz 50mv pp	
K. SIE 1x1 and CSSM 3 1/8 Bond	234
Fig. K.1 SIE 1x1 Bond Signal	
Fig. K.2 Load CSS Sim	
Fig. k.3 CSS Bond Signal	
Fig. K.4 CSS Log and DSP Signals	

L. AUDIO	
Fig. L.1 .5vpp 1 khz @ TP3	
Fig. L.2 .5vpp 6 khz @ TP3	
Fig. L.3 1 KHz @ 250 mvpp at Pin 5 the Audio Board	
Fig. L.4 1 KHz @ 1.5 vpp at Pin 5 the Audio Board	
Fig. L.4 1 KHz @ 10vpp at Pin 5 the Audio Board	
Fig. L.4 10 KHz @ 10vpp at Pin 5 the Audio Board	
M. APPLIED FREEPOINT	
Fig. M.1 Freepoint	
Fig. M.2 Freepoint Adjustment	
Fig. M.3 Freepoint Log	
N. TELA	
Fig. N.1 TELA Signal	
Fig. N.2 TELA Signal	
O. MTT	
Fig. O.1 MTT Signal 3.5 Vpp	
Fig. O.2 MTT Calibration	
Fig. O.3 MTT Sensor and Output readings	
Fig. 0.4 MTT Calibrations	
Fig. 0.5 Calibrated MTT Values	
Fig. 0.6 MTT Zero Calibration Check	
P. Recorder Service	
Q. External Power Supplies	
P = PS22 and $PS185$	256
N. NOZJZ aliu NO405	
APPENDIX	
Fig. 1 Panel layouts	

Introduction

Warrior software Release 7.0 is a second-generation 32-bit program, while Release 8.0 is a Unicode 32-bit and 62-bit release. The Warrior software is a mature logging environment that stresses ease of use, wide versatility, with a true multitasking environment. This software can also be used from a desktop to replay, recalculate and print logs from the raw data or imported data from other systems such as LAS or LIS data. The Warrior software runs on Windows Operating Systems (Windows 2000, Windows XP, Windows 7 32-bit and Windows 7 64-bit. Operators need to be familiar with Windows and logging.

The Warrior Tool Interface and Power Supply Panel is a new generation logging system. This system utilizes the USB Bus (Universal Serial Bus) along with DSP (Digital Signal Processor) technology providing the latest signal recovery technology available. This allows the PC to be upgraded independently as newer and faster PC's become available. Systems can be configured based on the services required at each site. The operator interface remains the same for each configuration, allowing the same look and feel for the operators.

The Warrior Well Logging System consists of a Tool Interface and Power Supply Panel, a computer, a printer and optional depth, line speed, line weight panel, and perforating power supply. The tool interface panel contains the necessary circuits to interface to most cased hole tools, both analog and digital. The depth encoder and line weight interfaces are built into the panel, as is the down hole tool power supply. All functions are digitally controlled from the software, with the power supply having a manual control mode. The panel incorporates data acquisition functions primary DSP based, that interface to the host computer through the industry standard Universal Serial Bus (USB). A nine port USB hub is also incorporated inside the panel allowing a single cable connection to the host computer. A second monitor may usually be attached to provide a Hoist-man's or client's display.

The system supports most thermal well log plotters and a selection of color printers. An optional depth, line speed and line weight panel is available. This panel provides 12 Vdc. powered, independent depth measurement. It connects to the host computer through the USB and can be synchronized from the host depth or the host depth may be read from the depth panel. The Warrior logging system currently consists of the following components:

CPU – Laptop/Desktop Monitor Shooting Panel Tool Interface and Power Supply (CP/PA/OP/SLAB) Keyboard Plotter Depth, Line Speed and Line Tension Panel (optional) UPS (optional)

It is strongly suggested that the CPU and monitor (and optionally, the interface panel) be run from an UPS with a capacity of approximately 1000 VA. Do not attempt to use an on-line type UPS with diesel generators unless the manufacturer specifically states that the product is suitable for this application. The (cheaper) switching type UPS seem to work well. Loss of data is guarded against by periodic update of the data base files, however, the use of a UPS allows the system to be shut down in an orderly manner and may also condition the line power to the system, thus eliminating problems due to a noisy power source.

Installation and Safety

Your safety and the safety of others is very important.

We have provided important safety messages on the safe handling and installation of the Standard Cased Hole Panel or "STIP" in this manual. Always read and obey all safety messages.

This is the safety alert symbol This symbol alerts you to potential hazards that can kill or hurt you and others. All safety messages will follow the safety alert symbol and either the word DANGER or WARNING.

You can be killed or seriously injured if you don't <u>immediately</u> follow instructions.

You can be killed or seriously injured if you don't follow instructions.

All safety messages will tell you what the potential hazard is, tell you how to reduce the injury, and tell you what you can happen if the instructions are not followed.

Important Safety Instructions

WARNING: To reduce the risk of fire, electric shock, or injury when using your interface panel, follows these precautions

- : Plug into a grounded 3 prong outlet.
- : Do not remove ground prong.
- : Do not use an extension cord.

- : Use nonflammable, plastic safe cleaner : Keep flammable materials and vapors away.
- : Disconnect power before installing panel
- : Disconnect power before servicing.

: Disconnect power before making any rear panel connections.

SAVE THESE INSTRUCTIONS

Explosion Hazard

Keep flammable material and vapors, such as gasoline or solvents away from the STIP. Failure to do so can result in explosion, fire or death.

To ensure proper ventilation for the STIP allow at least $\frac{1}{2}$ " (1.25 cm) on each side. When installing STIP allow at least 2" (5 cm) behind the panel.

Electrical Shock Hazard

Only certified service personnel should open the panel, persistent high voltage is present. Connect only to <mark>AC voltage</mark> as indicated on the rear panel.

Plug into a grounded 3 prong outlet.

Do not remove ground prong.

Do not use an extension cord.

Only Replace Fuses with the fuses of the same rating as indicated on the panel.

Ensure that the AC power supply is properly grounded and hot and neutral wires are properly polarized before installing the panel.

Disconnect panel power before making any rear panel connections.

Ensure there is a sufficient ground connection present at the slip rings as the panel is capable of producing high voltages in excess of 400v DC.

Before installing the panel in its final location, ensure you have a proper electrical connection.

Panels Hookups

TENSION TRASDUCER CABLE (ASCO PRESSURE TRANSMITER) Pressure Transducer 3 (Excite Usually Red) 5 Pin Male D ____ B _____ 2 (Signal Usually Black) C _____ Shield A _ F_ TENSION TRASDUCER CABLE (ASHCROFT PRESSURE TRANSMITER) ale Pressure Transducer D ______ 1 (Excite Usually Red) 5 Pin Male B ______ 1 (Excite Usually Red) C ______ Shield A _ E _ DC CABLE 12V DC 3 or 2 Pin Male Positive Battery Truck (12 VDC) B _____ Negative C ______ NČ LIGHTS CABLE 4 Pin Male Lights A — Common B — RED Light C — GREEN Light D — NC

1.1 Interface Cable Wiring

Fig 1.1 CPF-Plotter-CPU

Fig 1.2 CPF-DTLS-Plotter-CPU

Fig 1.3 CPF-Shooting-Plotter-CPU

Fig 1.4 CPF-DTLS-Shooting-Plotter-CPU

2 TELA Board

2.1 TELA R6

The TELA board amplifies the down-link telemetry signals. Signals from DAC0 via MuxB-2 enter at J1-26. IC1B is a buffer with a gain of 2 that feeds a current amplifier made up of IC1C, IC2 and IC1D. IC1D provides the feedback for the amp. D1 and D2 provide protection from signals over + or -15 volts. C1 and C2 provide DC decoupling from the line voltage up to 400vdc. The down link can be viewed at TP1 along with the attenuated up-link. K1 is not present "except in upgrade panels" so there should be a jumper across pins 12 and 14.

2.2 TELA R7

The TELA R7 board is similar to the R6 board with the addition IC3 MAX313 analog switch. It is used along with the enable line on J1-11 to enable downloads by bypassing R16 with the low impedance of the switch. When not in use the analog switch is disabled and R16 offers high input impedance to the line so that it does not attenuate signals from other services.

2.3 TELAH R5

The TELAH R5 board is functionally similar to the TELA R7 and R8 boards with the addition of transformer coupling and a slow TELA option for low frequency downlinks that bypasses the transformer.

Fig 2.1 Schematic Telah R5

Fig 2.2 Telah R5 board layout

3 Pre-Relays Board

This board controls the flow of tool power and tool signal through the interface panel.

The power relays board connects the line input of the tool interface panel to the rest of the circuitry in the panel. Functions of the card include enabling line, controlling line termination, selecting positive or negative power to be applied to tool, and enabling the down-link capabilities of the TELA card.

3.1 Circuit Description

3.1.1Line Input

The line input from the rear panel connectors J7 and J12 connect at pin 27 to one of the contacts of relay K2. In the un-energized state, this connects the line to chassis ground through pin 28. When a high signal level is applied to pin 8 from the PSXD board, K2 is energized and the line connects to pin 26. The second contact of K2, which is connected to +5V connects to pin 24 to supply power to the line enable indicator on the interface front panel.

The line connection at pin 28 connects to the Free Point board pin 12. Unless a free point service is to be run, a relay on the Free Point board connects the line to pin 10 of the Free Point board which returns to the PRELAYS board at pin 30.

From this point, the line is connected to the PSXD board to measure the tool voltage and to the ANASW board to do pre-filtering and conditioning of signals.

The line is also connected from pin 30 to relay K3 at pin 35. When this relay is energized, it connects to pin 34 and allows the downlink telemetry from the TELA board to be driven onto the line.

Relay K4 is used to control the line termination resistance. When K4 is not energized, the tool power passes through both R1 and R2. When K4 becomes energized, pin 30 connects to pin 31, shorting around resistor R2.

Resistor R1 connects to relay K1 at pin 5. Depending upon the state in which the relay is energized, either the positive or the negative side of the tool power supply is connected to R1. The other side of the supply connects through the second contact to pin 1, which goes to the PSXD board and passes through a .1 ohm resistor to chassis ground to measure the amount of current being supplied from the tool power supply.

Fig 3.1 schematic Prerelays R5

Fig 3.2 Pre-Relay R5 board layout

4 Applied Free point Board

This board drives a sine wave down the logging cable to an Applied Electronics or SIE style Free point tool. The response of the tool attenuates the signal. The amplitude of the attenuated signal has a bias applied to it to set a zero reference point. The change in the amount of attenuation is then measured to create an output.

Since the drive of the board must be directly connected to line without the effects of line termination or power supply load, the panel passes the line through a relay on this board to the rest of the panel circuitry or when engaged, connects the electronics on the board directly to the line connection.

Note that the board must be in the interface panel and the K1 relay must not be engaged for the line to connect to the rest of the panel circuitry.

The board also contains circuitry to "Set the tool" through isolated AC input, bridge rectifier and filter that creates a DC voltage. This voltage can then be applied to the line through a second relay.

4.1 Circuit Description

4.1.1 Line Input

The line connection to the panel passes through the line enable relay on the pre-relays board when the line is enabled and connects to J1-12. If K1 is not energized, the line passes through K1 to J1-10, which connects to the tool power supply, line termination resistors, and the ANASW board. When the K1 relay is energized the line connects to the K2 relay which connects either to the signal driver or the DC power supply to set the tool.

4.1.2 Line Driver and signal measurement

Buffer U6A receives a signal from the DSP with amplitude and frequency set in the DSP script. IC2 and U6B form a current driver that drives the signal though R23 onto the line. D3 and D4 protect the circuitry

from voltages inadvertently placed on the line. Amplifier U3A rectifies the signal at TP3, which is then filtered and amplified by U3B and is present at TP4.

Buffer U6C receives a DC level from the DSP, which is controlled by the zero scroll bar via software. The wiper of P1 can be adjusted from the negative rail voltage to the positive rail voltage. U2A sums these voltages together with the rectified and filtered signal at TP4. This signal is then passed through a final stage of filtering and amplification in U2C and U2D.

4.1.3 Adjustments

With a Free point tool on line in a relaxed state and the software zero scroll bars set to mid – range, P1 is adjusted for a 0.0 VDC level at TP5.

Fig 4.1 Schematic Applied Free point R7

Fig 4.2 Applied Free point R7 board layout
5 Power Supply Auxiliary Board

This card receives I2C signals from the USB44 board that control the outputs of the two octal bus drivers. The outputs of these drivers are used as control bits to engage various relays and switches throughout the panel. The I2C signals also control the output of IC3, which supplies software control for the tool power supply.

The card also contains the tool current sense amplifier and the line voltage divider. The outputs from these drive the front panel meters and are also routed to the DAC circuitry on the USB44 board.

There is additional circuitry to control the polarity and the source of control to the tool power supply.

5.1 Circuit Description PSAUX R2

5.1.1 TPS Output and Polarity Control

The I2C Clock and Data signals from the USB44 card are connected to IC5 and IC6 and drivers IC2 and IC7. Most of these signals are connected to edge connector and used to control various relays and switches throughout the panel.

Gates IC1A, IC1B, and IC1C control the tool power supply polarity switching via the tool polarity relay on the PRELAYS board via J1-31.

When the front panel switch is in the POS position, pins 1 and 4 of IC1 are grounded. Pin 8 of IC1 will be set low. With the switch in the NEG position pin 1 of IC1 is pulled high by R13. Pin 8 of IC1 will be set high. With the front panel switch in the center (NC) position, pin 1 of IC1 is held low by R10. Pin 4 of IC1 is held high by R12 and the signal on pin 5 now controls the output state of pin 8. Pin 5 of IC1B is connected to the polarity control bit of bus driver IC2. Additionally with pin 4 pulled high, U6A will take the control voltage from the output of the DAC IC3 and its related amplifiers rather than the front panel voltage control potentiometers. U6B is controlled by the output of IC1C and selects which front panel potentiometer is in control of the power supply when in manual mode.

I2C data is fed into Digital to Analog converter IC3, whose output is amplified through IC4A and IC4B to produce the software voltage control. P6 is used to adjust the signal to 0.0 volts when the software control is set to 0%. P5 is adjusted to 8.0 volts when the software control is set to 100%.

5.1.1 Panel Voltage and Current Measurement

The instrumentation amplifier, U1, amplifies the voltage across R5, the current sense resistor. The output of U2C drives the digital panel meter while the filtered output of U2B is sent to the USB44 ADC input channels.

The line voltage is divided by a factor of 100 by the resistor network consisting of P2, R8, and R9. The output of U2A drive the voltage panel meter while the filtered output of U2D is sent to the ADC on the USB44 board.

5.1.2 Adjustments and Jumpers

Software Tool Power Control

With the front panel switch in the center position, and software control set to 0%, P6 is adjusted for 0.0 VDC at TP1. With software control set to 100%, P5 is adjusted for 8.0 VDC at TP1.

5.1.3 Voltage and Current Measurement

P3 is used to adjust the panel voltage meter with no voltage output. P2 is used to adjust the ratio of the potential divider to give the correct voltage meter reading.

The potentiometer P4 is used to zero the panel current meter with zero current flowing. The potentiometer P1 is used to adjust the panel meter to a known current value.

5.2 PSDXDR7 BOARD

5.2.1New Features

- 1 Positive Current Regulator range: 0- +400mA
- 2 Negative Current Regulator range: 0- -400mA
- 3 Positive Current Trip range: 0- +450mA
- 4 Negative Current Trip range: 0- -450mA
- 5 Positive Voltage Trip range: 0- +400Vdc
- 6 Negative Voltage Trip range: 0 -400Vdc
- 7 TVOLT Calibration Gain and Offset save in the board (EEPROM)
- 8 TCURR Calibration Gain and Offset save in the board (EEPROM)
- 9 Compatible with Old software and old CPF panels
- 10 To Enable Line in MANUAL mode the Adjustment control knob must first be rotated fully counter clock wise.
- 11 To Enable Line in AUTO mode the Slider bar must be in 0Vdc.
- 12 Allow Instant Voltage check box to bypass the features (10-11-12-13).

5.2.2 General Description

This board receives I2C signals from the USB44, which control the following: Pre-Relay bus board, set zero Voltage, set zero Current, Span Voltage, Span Current, TPS voltage control, set polarity, Line enable, Set voltage, Set Current, Maximum Voltage, Maximum Current, sense Output Voltage, and, sense Output Current.

The IC7 (AD623) senses the current by measuring the voltage across the R5 0.1Ω resistor. The gain of the AD623 is resistor programmed by network R7, R2, and IC8 applies a gain of 10. The Diodes D1, D4, D5, and D6 are high conductance ultra-fast diodes to protect IC7. The output of IC11D drives the digital panel meter while the filtered output of IC11B is sent to the USB44 ADC input channels.

IC11, and IC6 are rail-to-rail high performance op-amps with a high CMRR, which makes them unique among rail-to-rail input amplifiers. Full wave rectification is provided by the circuit IC11A, and D2 for current, the IC11B is a buffer to connect to IC4.

IC1 and IC8 are DS1867 Dual Digital Potentiometers 10K with EEPROM. The DS1867 consists of two digitally controlled potentiometers having 256-position wiper settings. Communication and control of the device are accomplished over a 3-wire serial port SPI bus controlled by IC4, which allows reads and writes of the wiper position. Both potentiometers can be stacked for increased total resistance with the same resolution. One potentiometer set the Zero Voltage and the other set the Zero current.

IC4 PIN_84 (POL) controls the tool power supply polarity switching via the tool polarity relay on the PRELAYS board via J1-31.

When the front panel switch is in the POS position, PIN_93 IC4 is grounded. PIN_93 of IC4 will be set low. With the switch in the NEG position PIN_93 IC4 is pulled high.

With the front panel switch in the center (NC) position, PIN_94 IC4 is held low by R19.

The line voltage is divided by a factor of 100 by the resistor network consisting of R21, R28, R32, R33, and IC8. The output of IC6D drive the voltage panel meter while the filtered output of IC6B is sent to the ADC on the USB44 board.

Full wave rectification is provided by the circuit IC6A, and D3 for Voltage, the IC6B is a buffer to connect to IC4.

IC1 is used to adjust the panel voltage meter with no voltage output. IC8 is used to adjust the ratio of the potential divider to give the correct voltage meter reading.

The potentiometer IC1 is used to zero the panel current meter with zero current flowing. The potentiometer IC8 is used to adjust the panel meter to a known current value.

IC4 save TVOLT Calibration Gain and Offset save in (EEPROM1), TCURR Calibration Gain and Offset save in (EEPROM2), maintains the position of the wipers (IC1, and IC8) in the absence of power. This feature is provided through the use of EEPROM in IC4.

IC4 set the Positive and Negative Voltage Trip V_REF value over R1. Set the Positive and Negative Current Trip I_REF value over R11.

Software Tool Power Control With the front panel switch in the center position, and software control set to 0VDC, IC1_W1 is adjusted for 0.0 VDC at TP3. With software control set to 500 VDC, IC8_W1 is adjusted for 8.0 VDC at TP3.

The IC4 Check-sum is **295B**

Fig 5.1 Schematic PSDXD R7

Fig 5.2 PSXD R7 board layout

Fig 5.3 Schematic PSDXD R2

Fig 5.4 PSXD R2 board layout

6 Tool Power Supply and ACSW3

The tool power supply consists of a regulator board (TpsDR9.1), four pass transistors, two transformers, and the front panel controls to set positive and negative voltage levels and switch output polarity. If the front panel switch is in the AUTO position then the polarity and voltage may be set under software control. A small DC to DC converter powers the regulator, allowing it to float on the tool voltage. The main power comes from a 1:2 step up isolation transformer. The two transformers, together with the rectifier and smoothing capacitor are mounted on the rear chassis.

6.1 Circuit Description TPSD

Reference voltage from the PSAUX board enters the power supply at J5-2, it is a 0 to 8 volt input that is buffered and isolated by U3 a opto isolated OP amp. The output side of the amp is powered by PS1 the DC to DC converter. P1 is used to set the output of the power supply to 100volts dc no load with a 2.00v ref. The output of the power supply is fed into a voltage divider R13 and compared to the reference voltage at U4 pin 3 to produce a regulated output. U4 pin 6 feeds the gate of the power FET thru R1 to regulate the output. Power supply current flows thru R2 and R9 to produce an output voltage which when it reaches about .7 volts at the base of Q1 it will limit the current. This voltage is also compared to the .80 volt reference from P2 in 1C1A to switch U5. This output when active will clamp the power supply output thru SCR IC2. Once active the only way to reset the clamp is to power down the power supply.

6.2 Circuit Description ACSW3

The ACSW3 board is used to enable the main power transformer through AC switch THY1. This is software controlled via the I2C buss and the PSXD board. The board also rectifies the AC output with D1, D2, D3 and D4. This output passes through fuse F1 " 3 amp " and to inductor filters .

Fig 6.1 Schematic TPSD R10

Fig 6.2 TPSD R10 board layout

Fig 6.3 ACSW3 Schematic

+

Fig 6.4 ACSW6 Board layout

7 Analog Switch Interface Board

The analog switch board decouples the tool power voltage from the line signal input and routes it to the various interface boards. The primary outputs of the card are a series of buffered signals that are connected to the other cards of the interface panel. In addition, the card also includes an audio amplifier circuit that is used to amplify the line signal with output to a loudspeaker or headphones. This function is primarily used with audio (noise) surveys.

7i ANASW R16

7i.1 Circuit Description

7i.1.1 Line Input

The line signal enters the card on J1-23 (CC7-23) and is decoupled from the line by capacitor C4. Relay K1 is use to switch a filter in or out of the circuit thru Q3, IC4A andIC3. Zener diodes D1 and D2 limit the signal to about 12 volts, peak to peak. The amplifier U2A provides high input impedance so that signals are passed down to a very low frequency. IC2 is a dual serial DAC. The USB controller on the USB44 card communicates with it on an I2C bus over the serial data (SDA) and the serial clock (SCL) lines. It converts the data into analog voltages that are then used to control gains of scalar U3 for audio signals. U1A, U1B, U1C, U1D, and U2C are unity gain buffers to provide low output impedance to the other interface panel boards.

7i.1.2 Audio Amplifier

The audio amplifier consists of scalar U3 that provides volume control and audio power amplifier IC1. The output of IC1 connects via J1 39 to the output jack and headphones or a loudspeaker. A faceplate potentiometer can be configured to control the level.

7i.1.3 Wellhead Pressure and aux channel

U5 and U7 were added to provide means to process a Wellhead pressure and an Auxiliary channel capable of processing 2 and 20 ma signals. 12 VDC current limited supplies are provided by Q1 and Q2.

7i.1.4 Baker Mod

IC3 and IC4 were added to enable control of simulator routing into the panel from pin 2 on the Aux5 connector.

Fig 7i.1 Schematic Analog Switch ANASW R16

Fig 7i.2 Analog Switch ANASW R16 board layout

7ii ANASW R20

7ii.1 Circuit Description

7ii.1.1 Line Input

The line signal enters the card on J1-23 (CC7-23) and is decoupled from the line by capacitor C4. Relays K1 and K2 are used to switch in the HWFilter , they provide 4 options none, 234Hz, 482Hz and 723Hz 3db role off. The board routes the CCL signal around the HWFilter so that it is still possible to detect an analog CCL when the Filter is engaged. Zener diodes D6 limits the signal to about 12 volts, peak to peak. The amplifier U1A provides high input impedance so that signals are passed down to a very low frequency. The PSOC IC4 receives IC2 commands from the USB44 to control the relays via Q5 and to provide gain slider controls for the speaker output. U6 provides buffered outputs to the CBL, CCL, Audio and MTT boards

7ii.1.2 Audio Amplifier

The audio amplifier consists of scalar U2 that provides volume control and audio power amplifier IC1. The output of IC1 connects via J1 39 to the output jack and headphones or a loudspeaker

7ii.1.3 Wellhead Pressure and aux channel

IC5 and IC6 provide a means to process a Wellhead pressure and an Auxiliary channel capable of processing 4 and 20 ma signals. 12 VDC current limited supplies are provided by IC2 and IC12.

Fig 7ii.1 Schematic Analog Switch ANASW R20

Fig 7ii.2 Analog Switch ANASW R20 board layout

8 CCL Board

This card provides filtering and amplification of the casing collar signal when it appears as a low frequency signal imposed on the line or from an external source, such as a shooting panel with CCL output. Experience has shown that the CCL signal must be sampled at a rate of at least 20 samples per

foot in order to obtain a detailed collar log. The sample rate default value is set in the services.ini file. The CCL card input is connected to the line input via the ANASW card. In addition, there is an auxiliary input, which is connected to a BNC connector at the rear of the STIP. This input is used to provide a passive CCL signal while perforating guns are being run, without the main line enable relay being activated.

The output of the card is a filtered and amplified version of the input CCL signal, which is connected to the ADC on the USB44 card in the interface panel.

8.1 Circuit Description

This card provides 8th-order low-pass filtering (via IC3), and amplification of the casing collar signal when it appears as a low frequency signal imposed on the line or from an external source, such as a shooting panel with CCL output, additionally the signal can be routed by software as an Active CCL or Passive CCL.

The PSoC (IC4) receives control signals from the USB44 via the IC2 buss to select Active CCL (Pin1), Passive CCL (Pin1), corner frequency, CCL gain, and CCL audio.

The clock tunable for low-pass filter can set up with corner frequencies from 1Hz to 20Hz. The PSoC provides the external clock that control the filter's corner frequencies.

The CCL gain is controlled by IC4 and sent to the scalar U1 to increase or decrease the CCL signal. The scalar output (U1) sends the signal to low-pass filter (IC2).

The output of the card (J1-27) is a filtered and amplified version of the input CCL signal, which is sent to the ADC on the USB44 card in the interface panel.

The PSoC can be programmed via header SL1. The PSoC IC4 has a Check-sum = A43F

8.2 **PSoC Block Diagram**

The I2C Bus address is 36 (DEC) The PSoC receives commands via the I2C Bus from USB44 to control various functions.

8.2.1PSoC Pin Out

Pin1 Set control Passive/Active CCL Pin2 DAC output (0-5Vdc) Pin 3 SCL I2C Clock (100 KHz) Pin 4 GND Pin 5 SDA I2C Data (100 KHz) Pin 6 P0 (2) NC Pin 7 P0 (4) Output Freq. (100Hz or 1000Hz) this results in a corner frequency from (1 Hz to 10 Hz) Pin 8 VCC (5Vdc)

Fig 8.1 Block Diagram CCLVF R3

Fig 8.2 Schematic CCLVF R3

Fig 8.3 CCLVF R3 board layout

9 i CBL1 R6 Board

The CBL01 card conditions acoustic and analog pulse signals that are subsequently input to the SDSDSP card for data acquisition. The input to the card is connected to the line via the ANASW card. The card outputs three signal channels that are used for sonic sync pulse detection, analog pulse detection, and two channels of sonic signal for amplitude measurement, waveform recording and travel time measurement. The board has three filter sections that are controlled by Warrior software with the USB I2C bus to allow the greatest degree of flexibility for signal processing from different down-hole tools.

9i.1 Circuit Description

The signal comes from the ANASW board on CC7-9 and arrives on the CBL1DR5 board on CC9-23 (J1-23). It goes to buffer IC2A. The buffer output drives two other buffers, IC2B which drives LINEB, IC2D which goes through selective filtering controlled by IC9 and then to buffer IC2C to become LINESON(acoustic). Signal LINEB supplies the SYNC by going to DAC IC11, pin 18 which controls the gain going to IC3 and IC4, two multiplying DACs, AD7628, configured as programmable filters. IC3, OUTA and OUTB control the gain and Q of the filter made by IC6. IC4, OUTA and OUTB control the cutoff frequency. IC14A, DG403, selects either the high pass output, HPSYNC, or the band pass output, BPSYNC. IC14B allows the SYNC signal to be inverted, if necessary. The SYNC signal is buffered by IC8B and goes off the board on J1-12, SYNC OUT to the CBL02 board.

9i.1.1 LINEB

Signal LINEB also supplies the AUX signal. It goes to pin 4 of DAC IC23 for gain control and on to filter controls IC15 and IC16. The gain of the filter is controlled by IC15, OUTA, the Q is controlled by IC15, OUTB, and the cutoff frequency is controlled by IC16, OUTA and OUTB. The filter has two outputs, HPAUX, high-pass and BPAUX, band-pass. The output is selected by IC18A, DG403, and analog switch. IC18B allows inversion of the signal as needed. The signal leaves the board on J1-30 and goes to the TELA board where telemetry signals are processed. It also goes to DSP INP9, CC14-30.

The three filters are controlled by IC21, PCF8575 data register, and IC20, PCF8575, control register. These devices get data from the I2C bus which comes onto the board on J1-16 and J1-17 from the USB44. The filters are under software control through the USB bus and are set up in the tool configuration panel of the Warrior Software.

9.1.2 LINESON

LINESON is processed the same way by IC11, and IC1 and IC7. The ACOUSTIC channel leaves on J1-18 and goes to the CBL02 on CC10-23, threshold control. It also goes out on J1-10 to CC14-8, amplitude to DSP IN1.

Fig 9i.1 Block Diagram CBL1D R6

Fig 9i.2 Schematic CBL1D R6

Fig 9i.3 CBL1 R6 board layout

9 ii CBL1 R13 Board

The CBL01 R13 board conditions acoustic, pulse and telemetry signals that are subsequently input to the SDSDSP card for data acquisition. The input to the card is connected to the line via the ANASW card. The card has three outputs. The acoustic output is used for sonic amplitude, travel time and waveform recording in the DSP. The Sync output is used in combination of the CBL_02 and DSP to synchronize SCBL signals. The AUX output is used to either discriminate pulse data or decode telemetry signals in the DSP. The board has three filter sections that are controlled by Warrior software through the USB I2C bus which allows a greater degree of flexibility for signal processing from different down-hole tools.

9ii.1 Circuit Description

The signal comes from the ANASW board on CC7-9 and arrives on the CBL1 R13 board on CC9-23 (J1-23). The signal goes through the analog switch IC25 to connect to the two buffers on quad op amp IC2 to output LineSon and Line B. Line B is gain controlled by scaler IC27. LineSon passes through analog switch IC9 to provide Sonic Pre filter selection.

9ii.1.1 LINEB "Sync "

Line B produces the Sync output. It passes through the gain selector IC26 into the band pass filter controlled by IC3, IC4 and IC6. Analog switch IC1 selects via software control either band pass or high pass. IC4 B determines if the sync pulse is invered via software control. The sync output is then buffered by two stages of IC8 out pin 12 to the CBL 2 board.

9ii.1.2 LINESON "Sonic "

LineSon the sonic signal is gain selected by IC11 then routed through the band pass filter IC1, IC7 and IC12 to produce a software controlled output into IC13. IC13 selects via software either band pass or high pass filtering and optional signal inversion. The resultant signal is them buffered by three stages of IC24 and out pin 18 to the DSP.

9ii.1.3 LINE AT "Aux "

The Aux signal is fed out of IC26 into a precision software controlled filter with eight options to optimize pulse and telemetry signals. The filter is composed of three analog switches selecting specific filters made up of three stage filter IC10. This optimized output is buffered and scaled by IC15, IC19 and scaler IC22. The resultant output leaves on pin 30 to the DSP.

Fig 9ii.2 Schematic CBL1 R13

Fig 9ii.3 CBL1 R13 board layout

10 CBL2 Board

The CBL02 board provides detection of positive and negative sync pulses.

The CBL02 card receives several inputs and performs the functions of sync pulse detection. It receives acoustic signal inputs from the CBL01DR card and analog and digital control signals from the DSP. The card outputs are positive and negative sync detection signals.

10.1 Circuit Description

10.1.1 Sync. Pulse Detection

The signal from J1-12 of the CBL01 card connects to J1-3 of the CBL02 card and goes to the positive input of buffer U2D and the negative input of U2A. U2D supplies comparator U1B to process positive sync signals, and U2A supplies U1A for negative sync signals. The trigger level(s) of the comparator(s) are controlled by the DSP DAC0 signal that is connected to J1-38. This control signal is applied to the inverting input of U2C and then to the inverting inputs of U1A and U1B. In this way any signal appearing on J1-3 larger in amplitude than DAC0 (either positive or negative) will result in an output pulse at either U1A and/or U1B.

A potential sync pulse, having been detected in this manner, is then digitized and tested by the DSP for further verification. The actual level of the DAC0 signal is controlled by the DSP script (program) and may be varied to accommodate a variety of down-hole tools.

The outputs of U1A and U1B go to IC1A and IC1B, 7400 nand gate. The other inputs to the NAND gates are control signals from the DSP that inhibit the interrupts to avoid false sync signals. NEG SYNC and POS SYNC signals are connected to the SDSDSP board by CC10-37(J1-37) and CC10-35(J1-35).

10.2 Trouble Shooting Hints

10.2.1 Sync. Pulse Detection

The normal signal may be viewed on TP3 and the output of the comparators at test points TP1 and TP2. Comparison of these signals will indicate the correct (or otherwise) operation of the sync-pulse detection circuits.

The DSP DAC signal controlling the detection level may be viewed at pin 38 of the card edge connector.

Fig 10.1 Schematic CBL2 R14

Fig 10.2 CBL2 R14 board layout

11 Audio Board

The board consists of a high pass filter with 3db point around 100 Hz followed by a low pass filter with 3 dB point around 20 KHz The noise board has four outputs. Maximum signal input to the DSP is ± 2.5 volt DC. With a board input of 20 volt p-p, the range1 output is 5 volt p-p, with gain of 0.25. Range2 is set with a 2 volt p-p input with gain of 2.5. Range3 is 200 mv with gain of 25 and range4 is 20 mv with gain of 250. The software finds the largest signal that is not saturated and uses a Fourier transform to extract the signals in each frequency range.

11.1 Circuit Description

U8 and U9 are voltage regulators that are used to supply the signal amplifiers. They are used to remove any noise that might be on the panel rail supplies so that the noise does not appear on the outputs of the high gain amplifiers.

The signal enters the board at J1-5 from the ANASW board. It first passes through a 100 Hz to 20 KHz band pass filter comprised of U1A and U1B. U2 and U6A provide the Range1 output with a gain of .25. U3 and U6B provide the Range2 output with a gain of 2.5. In addition U3 has an offset adjustment to eliminate a signal offset in the following stages. The output of U6B is also feed into U4 and U7A. This stage has a gain of 10, so that the effective output of Range3 is a gain of 25. The output of U7A is also feed into U5 and U7B. This stage also has a gain of 10, so that the effective output of 10, so that the effective output of 250.

U10 and U11 are normally not installed. If the DG403 analog switches are installed in these positions, signals can be brought onto the board on J1-28 through J1-31 and DSP input channels normally used for noise can be used to process these other signals. Selection of signals would be made from software control on J1-25.

11.2 Board Configuration

Make Sure R5 & R8 are 20K ohm resistors

Fig 11.1 Schematic Audio R5

Fig 11.2 Audio Board R5 board layout

12 MTT Board

12.1 circuit Description

The MMT signal enters the board at J13-3, P1 sets the gain of U1A and U1B a low pass amplifier so that when the MTTair signal is applied there is 3.5 volts peak to peak signal present at TP2. U1C in combination with D1 provide DC conversion. U2A buffers this DC voltage before it is summed with the reference voltage from U3. U4A and U4B provide a low pass filter for the DC level before it is summed with the output of the pot P3. When the MTTair signal is applied P3 is adjusted for zero volts out of U4C. When the MTT55 test signal is applied gain pot P2 is adjusted for 1.85 volts output.

Fig 12.1 MTT R2 board layout

Fig 12.2 Schematic MTT R2

13 USB44 Board

13.1 Circuit Description

The USB44 board contains a 16 channel ADC, two three channel counters, and the depth and tension processing circuitry. When the computer is plugged into the USB port the Warrior software will recognize the board and download a program into the USB controller. The controller will continuously monitor these devices and send the information to the PC. The data may be viewed in the MONITOR DEVICES – DAMUPCI window.

13.1.1 Analog Channels

The ADC U3 is a, "AD976AR" it is a 16 bit, 5 usec device. The signals to be digitized come from IC2, HI506, analog multiplexer, which allows processing of 16 channels. Three channels are dedicated to line tension, tool voltage and tool current. The rest are available for customer tool signals. The digitized signals are sent to the PC by the USB controller, IC11. There are two three channel counters, U6, and U7. The Line speed and a 1MHZ clock are processed by IC6. There are three channels are available for pulse tools.

13.1.2 Depth Encoder Input

The depth information comes from a quadrature encoder mounted on the measuring head. Its outputs are pulses that come in on J1-10 and 11 and go to IC7, LS7084, quadrature clock converter. IC7 decodes the direction of cable movement which goes to IC1 as DIR and sends pulses, PPR, to the counter, U6, pin 18, to monitor line speed.

13.1.3 Line Tension Input

The tension signal may be a 4-20 ma current loop, R14, 24.9 ohms installed, or a strain gauge, with C36 - 2uf installed. The signal is amplified by U5 and digitized by U3 channel 6. The USB controller, IC1, sends the depth, line speed, direction and tension information to the PC.

Pull-up resistors, R16 and R17, are provided for encoders with open collector outputs. J2, J6 and J7 are used to select 5 or 12 volt encoder operation. K1 supplies 12 volts to regulator U1.

When the SDS Depth and Line Tension Panel are present the line tension signal, line speed and direction information is generated by this panel and routed to the PC directly on the USB bus.

13.1.4 USB Operation

IC1, the USB controller, is connected to the USBHUB through J1-14 and 15. IC5 contains the identity code for the board so that the Warrior software can identify it and download the proper software into the memory on IC1. The controller is constantly monitoring the counters and the ADC channels. The one MHZ is used as a time base to scale the counts. The controller communicates with the serial DAC's on Analog Switch Board over the I2C serial bus to J1-16 and 17. IC6 is a regulator for the 3.3 volts needed by IC1. IC11 decodes the address for the serial Mux, IC2 selecting the channel to be read by the ADC, U3.

Fig 13.1 Block diagram USB44 Board

Fig 13.2 Schematic USB44 R7

Fig 13.3 USB44 R7 board layout

14 DSPAUX Board

14.1 DSPAUX R4

This board contains the signal processing hardware for the DSP. Acoustic signals are digitized and sent to the DSP board where they go to the host computer via the USB port. The ADC is a 12 bit, 1.25 mega samples per second device which allows a maximum sample rate of about one sample per microsecond. Analog signals, IN1 to IN16, come in on the bottom edge connector, J1, and are routed to IC5, HI516, analog multiplexer, which selects one channel for the DAC IC2, MX7847JN and then on to the ADC IC1, LT1410. The DAC provides variable gain for the ADC. The other DAC channel and both channels from DAC IC3 go out J1 to control gains and filtering on other boards.

The DSP communicates with the ADC through IC9, M4A5-64/32 – FPGA, which contains logic to send #CONVST to start a conversion when #BUSY goes high indicating the ADC is ready. The digitized word is put on the data bus, D (0-11), and goes to FIFOs, IC13 and IC14, 64K x 9, where it is converted to a 16 bit word. The data goes to the DSP over the XD (0-15) bus from J2, 40 pin header connector which is connected to the DSP board. The DSP board passes the data to the PC over the USB bus.

The DSP communicates with the DACs over the XD bus. IC16 decodes the chip select signals for the two DACs. IC11, IC12 and IC15 allow communication via the board edge connector, J1, to other boards in the STIP. These are used control things like signal polarity and sync polarity.

Fig 14.1 Schematic DSPAUX R4

Fig 14.2 DSPAUX R4 board layout

15 DSP Board

This card contains a TI DSP which does signal processing tasks to free up PC resources. When a service is selected software for it is downloaded to the DSP external memory over the USB bus. Signal gain and filtering are controlled from here. Pulse, CBL and Telemetry signals are processed here.

15.1 Series R3 Boards

The early boards use Tyco power supplies to derive the 3.3 volts and the 1.8 volts for the DSP. The 1.8 supply requires a resistor to set the voltage.

15.2 Series R4Boards

The DSP is a TI TMS320C6201GJC200. It is a 352 pin BGA device which is soldered to an adapter so it can be plugged into a socket on the board.

Communication with the board is handled by U15, CY7C64603, USB controller. IC9, M4A3-64/32 FPGA routes control signals to various destinations. IC7, 24LC00P, contains the address of the board so the Warrior software knows what it is and downloads the right data. Each USB device has a unique code except the hub, which is operated as a generic device because it requires no programming. IC8 is a noise suppressor for the USB bus.

U3 and U4 make up 8 MB SDRAM memory for the DSP. IC4 and IC5 make up a 32 bit data transceiver to receive data from the DSPAUX board from J6. The A to D convertors are 12 bit so data is converted to 32 bit for the DSP.

Fig 15.1 Schematic DSP R10

Fig 15.2 DSP R11 board layout

16 USBHUB Board

The STIP-F is designed to be operated with a laptop PC over a USB port. The panel has a built in 13 port USB 2 hub. The Hub also has two RS232 ports and two RS485 ports. The USBHUB board is mounted in the back of the STIP. It has one up-link port and seven downlink ports. The up-link port is connected to both the front and the rear of the STIP. Relay K1 disconnects the back port when the front one is used. The five volts supplied by the host USB cable energizes the relay. If the PC does not supply this voltage it will be necessary to use the back port.

IC1 and IC19 form the backbone of the USB controller. As it is a 3.3 volt device IC22, MAX882, voltage regulator, supplies this from the five volt supply. The ECLAMP212's are noise suppressors for the various ports. The downlink ports provide five volts as needed.

There is a dedicated port for the Warrior Software dongle. There are 5 ports used to connect internal devices such as the USB44 board and the DSP board and are not available externally. Five ports are available for external devices such as the Warrior Depth and Tension panel, and plotters which may be operated with a USB to serial cable. The plotter port J7 stays active when the panel is powered down so that printing is still available.

The USBHUB is operated as a generic device because it requires no programming. When the PC is plugged into the STIP-F there will be a momentary pause as the Warrior software recognizes the internal devices and downloads the software necessary to operate them.

There is a jumper JP1 that allows the hub to be buss or self-powered, the default is buss powered. There is also a jumper that will tie the digital ground to the panel ground for if required.

Fig 16.1 Schematic USB2 R18 Hub

Fig 16.2 USB2 R18 Hub board layout

17 Simulator Box

The USB Simulator connects to the USB port of the system pc and receives 5-volt power up to 500ma from it. Tool waveforms can be downloaded and then played back in analog form through the line or directly into the system. Outputs to test the Depth Encoder and Tension are also provided.

FIG: 17.1 Simulator

When the USB Simulator is powered up by plugging it into the USB port of a PC or the USB HUB of a Warrior Interface panel, it goes through a two-step enumeration according to the device code found on EPROM IC5. Double clicking the SIMULATOR icon in the Warrior panel will bring up the control window.

FIG: 17.2 Simulator Controls

Select LOAD and choose the tool waveform from a list. These files are located in the Warrior Bin directory.

LUOKIN			_ , [:::] ,
	3506.sim	🔟 leehiresptgrcclmultiframe.sim	國 teksect.sim
	Computalog-MTT-55.sim	🛅 LEE-TEL-GR-CCL.sim	🔟 titangostyle.sim
My Recent	Computalog-MTT-Air.sim	🛅 muxblong.sim	🛅 ttngh.sim
Documents	copcss.sim	🔟 Noise-Tool-1Khz.sim	
	css1x2_3us.sim	🔤 PMC Compensated CBL.sim	
	CSS-1-11-16-SCBL.sim	📾 prb2rcvrcblcal.sim	
Desktop	CSS-3-25-SCBL-25K-Line.sim	🛅 proberadi4u.sim	
100	🗟 csstuckeð w.sim	🛅 SIE-1×1-CBL.sim	
	CTekSect5us.sim	🐻 SIE-1×2-NegMark.sim	
$\boldsymbol{\boldsymbol{\mathcal{P}}}$	🛅 eli.sim	👼 SIE-1×2-PosMark.sim	
y Documents	🛅 Gamma-Ray-Temp.sim	📷 slt05.sim	
	Gamma-Ray-Temp-CCL.sim	🐻 Sod2rcvrbnd.sim	
	Gearhart-CBL-64us.sim	📼 St×05.sim	
<u> </u>	GRSPAN19A.SIM	TECSECSLIM.sim	
ty computer	🗟 leehiresptgrccl1frame.sim	TEKCO-1×2-CBL-SIE.sim	
My Network	File name:		• Open
Places	Files of type: *.sim		Cancel
3 Simulator to	ol files		
	Powe	er Control 🗙	
	- Enable		

Polarity Positive

Keep this box
 Software Monitor

🗌 Outputs			_10	
Name	Source	Value	Units	
LSPD	[STD]	-48.2500	ft/min	
LTEN	[STD]	1.9720	Ь	
TCURR	[STD]	10.4642	mA	
TVOLT	[STD]	10.3738	Ŷ	
ELTIM	[STD]	158,4600	sec	
ADPTH	[STD]	4732.9751	ft	
MINMK	[STD]	0.0000		
LTENRT	[STD]	1.9720	Ь	
DLTENRT	[STD]	-0.0012	Ь	
LSPDRT	[STD]	-48.2500	ft/min	

FIG: 17.5 Outputs

To playback the waveform press the START button.

There are slides for Encoder Speed and Output Gain. The Encoder speed will depend on what number is input for pulses/foot. 120 should give a reasonable range. If less speed is needed change the number to 600 pulses per foot. There is a button for high and long range. Low range will provide speeds less than 100 feet per minute. There is a button for changing the direction, up/down.

The Depth Encoder power from the interface panel lights an LED or both if it is twelve volts.

17.1 Circuit Description

The simulator gets its intelligence from IC1 – a Cypress AN2131Q EZ-USB controller with 8k of internal ram. An external 128k x 8 static ram, IC2 - CY71019B – is used to store waveform data. IC5 - 24LC00P, EPROM is used to store the USB address code so the device enumerates as a Simulator and not as something else.

IC6 provides 3.3 volts for most of the logic from the USB 5 volt supply. A DC-DC Converter supplies +/- 12 volts from the 5 volts supplied by the USB port. An external 5-volt supply can be used if it is needed.

The encoder frequency is set by OUT0 from DAC, MAX519. The DAC output goes to a voltage divider to reduce the 0 to 5 volt swing to 0 to 1 volt for the V to F converter, IC10, AD654. Software controls the high and low range of the encoder speed. The output frequency goes to IC9B, buffer, and then is split and one side inverted. One side goes to IC12A, and the other to IC12B, SN74LS74, dual D flip flop. These are wired to give two wave trains 90 degrees apart. The A signal goes to Encoder Out A. The B side goes to IC9A where PA5 sets direction. When PA5 is changed the output of IC9A will be inverted. That is how UP/DOWN is controlled. The signal then goes to Encoder Out B. IC7 and IC8 test the ENCODER voltage, lighting one led if it is five volts or both LEDs if it is twelve volts. The encoder pulses are derived from the supply voltage. A 5 volt supply produces 5 volt pulses and a 12 volt supply produces 12 volt pulses.

SDA and SCL from IC1 control the DAC. IC4 address lines: 01000000 address byte.

PA6 controls IC14, DG411, switch. It connects R32 for 20ma and disconnects it for 2ma. The 12 volts from the STIP is converted to a current by IC7, LM317 to furnish the output signal. The circuit will accept a 24 input also.

The data loaded into the ram, IC2, is sent to the DAC a byte at a time and reproduces whatever waveform has been recorded. The chip enable comes off A15 to allow memory paging. It is inverted. Write enable and out enable are active low. A15 is used because we are only interested in high addresses. A16 comes

from PC1/TXDO. R36 was added to shift the DC offset of the DAC to zero. The signal is sent from the DAC to U2A, TL082P, op amp, and then to U3, AD633, and voltage multiplier, through a 1K resistor. The multiplier voltage is supplied by IC4, serial DAC, and OUT1, which set the output gain. The signal then goes to U2B and IC3, BUF634, op amps to the line out connector.

Cable to Encoder and Line Weight:

17.2 SIMULATOR Hookups

5 PIN MALE - Tension -----Interface Panel

A - TENSION SIGNAL GROUND REF	A
B - TENSION SIGNAL OUT	B
C - tied to E	C
D - +12 VOLTS IN	-D
E – GROUND	E

7 PIN MALE – Depth Encoder

A – ENCODER-A B – ENCODER-B C – N/C D – ENCODER POWER IN E - GROUND

FIG: 17.6 USB SIM R2 board layout

FIG: 17.7 USB SIM R2 Schematic

18 Recorder

18.1 Warrior Line Signal Recorder Service

With the Recorder service, it is possible to make a recording of the line signal with minimal filtering. The recording can then be used to make a Simulator file to play back into the system through the Scientific Data Systems Simulator Box. Or the recorded file can be sent to Scientific Data Systems to check the tool telemetry or set up a new service for the tool telemetry. The recorder service is not normally installed as one of the default services. The service can be imported through the Service Editor.

Warrior Utilities			
Data Export	Depth Correction		
Export to LAS Format	Apply Linear Depth Shift to a Dataset		
Export to LIS Format	Apply Linear Depth Shift to a Data Item		
Export to ODBC Compatible Database	Data Management		
Extract Pass(es) to New Database	Create an Alias for a Data Item		
	Multiple Pass Automerge		
Interpretation Tools	Edit Variables in a Dataset		
Mathpack	Create Variables in a Dataset		
XY Plot	Create Waveform Gate Curves		
Tracer Interpretation	Create CCL Curve from Keyboard		
Create Differential Curve	Delete Data from a Database		
Create Total Dissolved Solids Curve	Undelete Data		
Calculate Borehole Volume from Caliper	Rename a Data Item		
Calculate Rxo/Rt & Rwa	Edit a Log Curve		
Pipe Tally	Select Correlation Curves for Database		
Curve Normalization	Data Import		
Setup Tools	Read ASCII Data into Warrior		
Calibrate Printer	Read LIS Data into Warrior		
Configuration Backup/Restore	Import ODBC Data into Warrior		
Edit Logging Service Details	Create Log Format from Dataset		
Edit Logging Tool Details			
	Exit		

FIG: 18.1 Select Edit logging Details

To install the Service Editor, go to Warrior Utilities and click on [Edit Logging Service Details]. To Import the Recorder Service, Click on Service ->Import. From the Warrior\Config folder, choose the CH USB 70.WSV file and click the [Open] button. From the service import list, choose the Recorder service. It will then be added as the last service in your active service list. The Service Editor and Utilities can now be

closed. If Acquisition is open, it will have to be closed and then reopened before the Recorder service will be available.

FIG: 18.2 Service\Import

Select serv	e(s) to import
80=Madden Ptsfg 81=Panex Flowmeter 82=Panex Pressure Gauge 83=USBAUX Test 84=TELA-TEST 85=CBL1 Test 86=SLAB BOX TEST	
87=Recorder 88=Spartek Production Logging OK	Cancel

FIG: 18.3 Import Recorder service

To make a line recording, start Acquisition and select Service -> Recorder. When the Tool String editor comes up, click [Save] or [Exit], there are no tools to select or edit. In the Acquisition window click on Action -> Power Control and enable the line in the normal manner. Adjust tool power for proper operating voltage and current for the tool that you are using. The Recorder Threshold window will show a sample of the signal that will be recorded. No adjustments are necessary in the Recorder Threshold window.

Recorder Threshold	
♬ - ? ॏॣ � - Q - \\	• 80 •
Recorder	<u> </u>
2/s	

FIG: 18.4 Recorder

Copy Remove Remove Remove Remove Remove Service Details Copy Move Remane GR Pulse) Service Details Presentation Tile Presentation Tile Common Bord Tay Service Details Controls Controls Controls Controls	d Filters
Service Details Copy Active Rename GR Putse) Service Details Presentation Tate Presentation Tate V Use private copy of presentation for all logs from this service Edd Gains an SE EXCEMENT BOND POS GR) SE EXCEMENT BOND SE EXCEMENT BOND SE EXCEMENT BOND FEXCO Cement Bord 1s2 Mark Probe Cement Bord For Tase Controls	d Filters
Geethat Cement Bond SIE Cement Bond 1x2	
Sensors Tools	
Disabled	
sady	

gnal Recorder		
Input Channel	15	Apply Settings
Sample Rate (us)	5	Record
Attenuation (%)	75	Stop
Record Time (s)	10	Abort

FIG: 18.5 Set up Signal Recorder

There are two other windows that come up when the Recorder service is started. These are the Panel Controls window and the Signal Recorder Setup window. The Panels Controls are not normally used unless the default Input Channel is changed from 15 to a channel that corresponds to the Sync, Aux, or Sonic input channels. This will be discussed further later.

There are 4 settings in the Signal Recorder Setup window that can be adjusted. If any of these settings are changed, the [Apply Settings] button must be clicked before the recording is done; otherwise the original settings are used.

The Input Channel is the selected DSP input channel (0 to 15). These channels are hard wired within the Warrior Interface Panel. Channel 15 comes from the ANASW board. The signal has been capacitive decoupled from the line and ran through a buffer. It is as true a raw signal as the system can digitize.

The Sample Rate is how often the DSP will digitize the incoming signal. A 5us rate is appropriate for most recordings. It should not be set to lower than 3us.

Signals may be attenuated on the DSP before they are digitized. Before doing a recording, the Attenuation setting should be adjusted to maximize the signal in the Recorder Threshold Window. The signal should

not go to the top or the bottom of the window. The smaller the Attenuation setting value, the larger the signal will be. An Attenuation of 100 will not show any signal and will not give a usable recording. The record time is the number of seconds that the signal is recorded.

When settings have been adjusted as needed and the [Apply Settings] button has been set, the next step is to click the [Record] Button. You will need to select a file name to save the file. It is recommended that the file extension show the sample rate so that the file can be played back at the appropriate rate to give a valid recording such as 5us for a 5-microsecond sample rate. Once the [Save] button is clicked, the recording will start and continue for the number of seconds set in the Record Time setting. The Record Time will count down showing the number of seconds left to record until the recording is complete.

Select a filenan	ne for the outp	ut recorder file.			? 🔀
Save jn:	🛅 Data		•	+ 🗈 💣 📰+	
My Recent Documents Desktop My Documents My Main Computer	delware temp jj.5us MTT55.5us MTT55.5us MTTAIR.5us pengo.5us pmc2x3.5us sonic2.5us	.5us			
My Network	File <u>n</u> ame:	Test Recording			<u>S</u> ave
Places	Save as type:	*.5us			Cancel

FIG: 18.6 Save the Recorder signal

The following is a list of the Hard Wired DSP channels in the SDS Interface Panel.

Input Channel	Signal	Note
0	Sonic Amplitude	Configurable Filter
2	Audio X10	
3	Audio X1	
4	Sync / Pulse	Configurable Filter
5	Audio X.1	
6	Audio X.01	
8	AUX	Configurable Filter
15	ANASW Signal	Recorder Default

18.2 Converting Recordings to SDS Simulator Box Files

The recording must first be converted from a DSP recording to a WAV file and then the file must be edited to fit a format needed by the simulator box.

In Warrior\Bin32 is SIMConvert.exe that will read in a recording and write a WAV file. Click on the [Load O scope File] button to select the DSP recording. After loading the file and before writing the 8 Bit Wave file, be sure that the sample period matches the sample rate done during the recording. For simple recordings,

the difference in the Start Sample and Stop Sample should be less than 128000, since this is the maximum number of samples the Simulator box can hold. Click the [Write 8 bit Wave] button to write the file. If this is a simple file, it can be saved with a .SIM extension and used directly by the Simulator Box.

		Close
Take an Oscope file and convert	to 8 bit or16 bit wave —	
Load Oscope file	Write 16 bit Wave	1) Select an 'Oscope' recording 2) Correctly enter Sample Period
5 Sample Period uS (3 - 10	uS) Write 8 bit Wave	3) Uptionally change range to be converted (Start and Stop) 4) For a simulator compatible 'wa file select 'Write 8 bit Wave'
0 Start Sample	<u>.</u>	5) Use a suitable 'way' editor to
0 Start Sample		file select 'Write 8 bit Way 5) Use a suitable 'way' ed make a final simulator file

```
FIG: 18.7 SIM convert
```

Open				? 🛛
Look in: Control Contr	Data emp.5us s us s	sonic2.5us	_ ← €) 🗗 🗐 -
File <u>n</u> ame: Files of <u>type</u> :	Test Re	cording.5us		<u>O</u> pen Cancel

FIG: 18.8 Open

FIG: 18.9 Save As

With more complex recordings, it may be necessary to use a Wave Editor to view and modify the recording before converting it to a simulator file. The Warrior software does not include a waveform editor, but there are many free editors available through the Internet. The following Internet link is a down load for a very versatile editor - HTTP: //www.yamahasynth.com/download/twe.html.

If the signal being recorded has a periodic rate, the waveform should be edited to start before a given point in the period of the signal and to end before the same point at a number of cycles later in time and keep below the 128,000-sample limit of the Simulator Box. The waveform editor could also be used to adjust the amplitude of the recording or insert or enhance features in the recording, such as gamma pulses in a bond tool recording.

19 CPF Wiring Diagrams

FACE PLATE ASSEMBLY - CHP-USB/HAL 1/1/04

FRONT VIEW OF CONNECTORS SHOWN

HORIZONTAL PLATE ASSEMBLY - CHP-USB/HAL 1/1/06

VERTICAL PLATE ASSEMBLY - CHP-USB/HAL 1/1/06

Fig 19.2 CPF Wiring Diagram

Fig 19.4 CPF Front Panel Wiring Diagram

Fig 19.4 CPF Power Supply Wiring Diagram

Fig 19.5 CPF Flow Chart

20 Wire List for STIP-F USB

Wire list for STIP-F USB -(H)Halliburton (B)Baker Single conductor Tool Interface Panel 5/17/2018

BACK PANEL ASSEMBLY

JAC - AC Input

JAC-1	J41-4	BLUE	{S1-2}	AC Neutral
JAC-2	F1-1	BLACK		AC Line
JAC-3	TB1-1L	GREEN		Ground

F1 - Main Power (3 Amp)

		BLACK		ACLoad
F1-2	J41-6	BLACK	{S1-4}	Fused AC Load

F2 - Encoder Power (.5 Amp)

F2·	-1	J8-D	(H)J8-J	BLACK	Fused Encoder Power
F2·	-2	CC13-9		BLACK	Encoder Power

J6 - Tension Input

J6-A	CC13-38	(BLK)	Line Tension Input Negative
J6-B	CC13-40	(RED)	Line Tension Input Positive
J6-C			
J6-D	CC13-12		Line Tension +15V Excitation
J6-E	CC12-20	(SHLD)	Ground

(H)J6 - Tension Input

(H)J6-A	CC13-38		(BLK)	Line Tension Signal-
(H)J6-B	CC12-20		(SHLD)	Ground
(H)J6-C	CC13-12			Line Tension +15V Excitation
(H)J6-D				
(H)J6-E	CC13-40		(RED)	Line Tension Input Positive
(H)J6-F				
(H)J6-G	CC13-18			Cal Relay
(H)J6-H				
(H)J6-J	(H)J8-LUG			Shield
(H)J6-K				

WHP1 - Well Head Pressure #1 {Not Normally Installed}

WHP1-A	CC7-11	WHITE	(BLK)	-(4-20MA) Input Negative
WHP1-B	CC7-10	WHITE	(RED)	+(4-20MA) Input Positive
WHP1-C				
WHP1-D	CC7-8	WHITE		WHP1 +15V Excitation
WHP1-E	CC7-20	WHITE	(SHLD)	Ground

WHP2 - Well Head Pressure #2 {Not Normally Installed}

WHP2-A	CC7-14	WHITE	(BLK)	-(4-20MA) Input Negative
WHP2-B	CC7-13	WHITE	(RED)	+(4-20MA) Input Positive
WHP2-C				
WHP2-D	CC7-18	WHITE		WHP2 +15V Excitation
WHP2-E	CC7-42	WHITE	(SHLD)	Ground

J7 - Line UHF Connector

J7	CC2-27	J12	BLACK	Logging Cable Connections
	Connect Shield to J7 Lug			

J12 - Line BNC Connector

				Logging Cable
J12	J7	{CC2-27}		Connections

J16 - CCL Passive Input BNC

	J16	CC8-7	WHITE	Passive CCL Input
-				

J8 - Encoder Input

J8-A	CC13-11			Encoder Phase A
J8-B	CC13-10			Encoder Phase B
J8-C				
J8-D	F2-1		BLACK	Fused Encoder Power
	F2-2	CC13-9	BLACK	
J8-E				
J8-F	J8 GND LUG		GREEN	Ground
J8-G	J8 GND LUG		GREEN	Shield Ground
J8-LUG	Connect Shield from J8	-A&B to Connector screw	GREEN	

(H)J8 - Encoder Input

(H)J8-A	CC13-11		Encoder Phase A
(H)J8-B	CC13-10		Encoder Phase B
(H)J8-C			
(H)J8-D			
(H)J8-E			
(H)J8-F	J8 GND LUG		Ground
(H)J8-G			
(H)J8-H			
(H)J8-J	F2-1		Fused Encoder Power
(H)J8-K			
(H)J8-L	J8 GND LUG		Shield Ground
(H)J8-M			
(H)J8-LUG	(H)J6-J		
	Connect Shield from (H)J8-A&B to J8 GND LU	3	

AUX1 - LLM or -10 to +10 Analog Signal

AUX1 CC13-25 WHITE				
	AUX1	CC13-25	WHITE	

AUX4 - Auxiliary Inputs

AUX4-2	CC13-2	V	VHITE	BASE - 15
AUX4-3	CC13-3	V	VHITE	BASE - 14
AUX4-4	CC13-4	V	VHITE	BASE - 13
AUX4-5	CC13-5	V	VHITE	BASE - 12
AUX4-6	CC13-6	V	VHITE	BASE - 11
AUX4-9	CC13-34	V	VHITE	CTR4
AUX4-10	CC13-35	V	VHITE	CTR3
AUX4-21	CC1-19	B	BLACK	+5V
AUX4-22	CC1-20	6	GREEN	GND
AUX4-23	CC1-21	B	BLACK	-15V
AUX4-24	CC1-22	B	BLACK	+15V

FN2 - Rear Fan

FN2-1	TB1-3L		AC Neutral
FN2-2	TB1-5L		AC Line

Top RS232

3	HUB_J18-1	WHITE	Tx Typically "C"
2	HUB_J18-2	WHITE	Tx Typically "C"
5	HUB_J18-3	GREEN	GND

Middle RS232

3	HUB_J18-4	WHITE	Tx Typically "A"
2	HUB_J18-5	WHITE	Tx Typically "A"
5	HUB_J18-3	GREEN	GND

RS485

1	HUB_J16-4	WHITE	D+ Typically "B"
2	HUB_J16-5	WHITE	D- Typically "B"
6	HUB_J16-2	WHITE	D+ Typically "D"
7	HUB_J16-3	WHITE	D- Typically "D"
5	HUB_J16-1	GREEN	GND

USB Hub

HUB J9 - To USB44

HUB_J2-1	CC13-20		{Shield}	
HUB_J2-2	CC13-15		{Red}	
HUB_J2-3	CC13-14		{Black}	
HUB_J2-4				

HUB J10 - To DSP

HUB_J3-1	DSP_J5-1		{Shield}	
HUB_J3-2	DSP_J5-3		{Red}	
HUB_J3-3	DSP_J5-4		{Black}	
HUB_J3-4				

HUB J1 - Sondex Ultralink

HUB_J4-1	SDX_J5-1		{Shield}	
HUB_J4-2	SDX_J5-3		{Red}	
HUB_J4-3	SDX_J5-4		{Black}	
HUB_J4-4				

HUB J15 J4 J2 - Spare

HUB_J4-1			
HUB_J4-2			
HUB_J4-3			
HUB_J4-4			

HUB J7 - Hub Power

HUB_J9-1			
HUB_J9-2	CC13-42	GREEN	GND
HUB_J9-3	CC13-41	BLACK	+5V
HUB_J9-4			

HUB J8 - FacePlate USB

HUB_J10-1	J48-BLK		
HUB_J10-2	J48-GRN		
HUB_J10-3	J48-WHT		
HUB_J10-4	J48- <mark>RED</mark>		

HUB J16 -

RS232

HUB_J16-1	Top RS232 3	WHITE	Tx Typically "C"
HUB_J16-2	Top RS232 2	WHITE	Tx Typically "C"
HUB_J16-3	Both Ports	GREEN	I GND
HUB_J16-4	Top RS232 3	WHITE	Tx Typically "A"
HUB_J16-5	Top RS232 2	WHITE	Tx Typically "A"

HUB J18 –

RS485

HUB_J18-1	RS485 5	GREEN	GN	ID
HUB_J18-2	RS485 6	WHITE	D+	Typically "D"
HUB_J18-3	RS485 7	WHITE	D-	Typically "D"
HUB_J18-4	RS485 1	WHITE	D+	Typically "B"
HUB_J18-5	RS485 2	WHITE	D-	Typically "B"

(B) AUX5 -PFC Input

-	AUX5-2	CC7-29		PFC Signal
	AUX5 Lug	(CC7-29) Shield		Shield

(H) J1 -Extermal Power

J1-A	TB1-2R		Ground
J1-B	CC2-2		EXT Power High
J1-C			
J1-D			
J1-E	CC2-3		EXT Power Low

Sondex Ultralink Wiring SDX_J5 - Sondex USB

SDX_J5-1	HUB_J4-1	{S	hield}
SDX_J5-2			
SDX_J5-3	HUB_J4-4	{R	ed}
SDX_J5-4	HUB_J4-3	{B	lack}
SDX_J5-5			

SDX_J1 -

SDX_J1-1	TB1-1L	GREEN	Ground
SDX_J1-2			
SDX_J1-3			
SDX_J1-4	CC2-39	BLACK	Tool Power

SDX_SKT1 - Sondex Signal

SDX_SKT1	CC2-17				
----------	--------	--	--	--	--

SDX_J12 - Sondex DC Supply Power

SDX_J12-1	TPSD-J5-2	{PS2-S-}	BLACK	-15V
SDX_J12-2				
SDX_J12-3	TPSD-J5-4	{PS1-S+}	BLACK	+5V
SDX_J12-4	TPSD-J5-3	{PS3-S-}	GREEN	GND
SDX_J12-5	TPSD-J5-1	{PS3-S+}	BLACK	+15V

HORIZONTAL PLATE ASSEMBLY

TB1

TB1-1L	JAC-3	SDX_J1-1	GREEN	Ground
TB1-1R	TB1-2R	J60-2	GREEN	Ground
TB1-2L	T1-Lug		GREEN	Ground
TB1-2R	TB1-1R		GREEN	Ground
TB1-3L	FN2-1	J41-1	BLUE	AC Neutral (Switched)
TB1-3R	TB1-4R	J60-1	BLUE	AC Neutral (Switched)
TB1-4L	T1-P1 BLK	T1-P2 RED		AC Neutral (Switched)
TB1-4R	TB1-3R	TB3-7R	{FN3-1}	AC Neutral (Switched)
TB1-5L	FN2-2	J41-3	BLACK	AC Line (Switched)
TB1-5R	J60-3	ACSW3-ACIN	BLACK	AC Line (Switched)
TB1-6L	T1-P1 BRN	T1-P2 ORG		Switched Tool Power Primary
TB1-6R	TB3-6R	{FN3-2}	BLUE	Switched Tool Power Primary
TB1-7L	T1-S1 GRN	ACSW3-ACIN		AC Tool Power Secondary (1)
TB1-7R	ACSW3-ACOUT			AC Tool Power Secondary (1)
TB1-8L	T1-S1 YEL			AC Tool Power Secondary (2)
TB1-8R	ACSW3-ACOUT			AC Tool Power Secondary (2)

J60 - AC Power to DC Supplies

J60-1	TB1-3R	BLUE	AC Neutral (switched)
J60-2	TB1-1R	GREEN	AC GND
J60-3	TB1-5R	BLACK	AC Line (switched)

T1 - Tool Power Transformer

T1-P1 BLK	TB1-4L		Primary 1 Black
T1-P1 BRN	TB1-6L		Primary 1 Brown
T1-P2 RED	TB1-4L		Primary 2 Red
T1-P2 ORG	TB1-6L		Primary 2 Orange
T1-S1 GRN	TB1-7L		Secondary 1 Green
T1-S2 YEL	TB1-8L		Secondary 1 Yellow
T1-S3 BLU		N/C	Secondary 1 Blue

ACSW3

ACSW3-IN	TB1-5R		BLACK	AC Line
ACSW3-IN	TB1-6R		BLUE	AC Tool Power Primary
ACSW3OUT	TB1-7R			AC Tool Power Secondary
ACSW3OUT	TB1-8R			AC Tool Power Secondary
ACSW3-R+	J42-17		BLACK	Switched Line Enable
ACSW3-R-	CC4-20		GREEN	Ground
ACSW3-C+	C1(+)		BLACK	DC Voltage HIGH
ACSW3-C+	TB3-2R	{R3}	BLACK	DC Voltage HIGH
ACSW3-C-	C1(-)		BLACK	DC Voltage LOW
ACSW3-C-	TPSD-J2-NEG		BLACK	DC Voltage LOW

R1 - 150 Ohm Termination

R1-1	R2-1	{CC2-31}	BLACK	(H)L1-1	
R1-2	CC2-37		BLACK		

R2 - 150 Ohm Termination

R2-1	R1-1	CC2-31	BLACK	
R2-2	CC2-35	{CC2-30}, {CC3-10}, {CC6-1}, {CC7-23}	BLACK	Line input

(H)L1 -35mh

L1-1	R1-1	CC2-31		
11-2	CC2-35	{CC2-30}, {CC3-10},		Line input
L I-2	002-33	{000-1}, {007-23}		

C1- 320uf @ 450 VDC

C1(+)	ACSW3-C+	BLACK	
C1(-)	ACSW3-C-	BLACK	

TPSD - Tool Power Supply Regulator

TPSD - J1

J1-1	CC6-38	WHITE	TPSD Voltage Control
J1-2	CC8-17	WHITE	SDA - I2C Data
J1-3	CC8-16	WHITE	SCL - I2C Clock

TPSD - J2

J2-1/2	CC2-6	BLACK	TP High Side
J2-2/1			TP High Side
J2-3/4	ACSW-C-	BLACK	TP - Low Side
J2-4/3	CC2-25	BLACK	TP - Low Side

TPSD - J3

J3-1	TPSD-J3-2	(B)J65-3	BLACK	{(B)S4-5}	PFC Limit Switch
J3-2	Q1-S	TPSD-J3-1	BLACK	(B)J65-1	omit J3-1 and 2 jumper for Baker
J3-3	Q1-G				

TPSD - J5

J5-1	PS1-S+	SDX_J12-3	BLACK	+5V
J5-2	PS3-S-	SDX_J12-2	GREEN	GND
J5-3	PS2-S-	SDS_J12-5	BLACK	-15V
J5-4	PS3-S+	SDX_J12-1	BLACK	+15V

Heat Sink - Q1

Q1-S	TPSD-J3-2		BLACK	
Q1-G	TPSD-J3-3		BLACK	
Q1-D	TB3-1R	{ACSW3-C+}	BLACK	

Fan #3 - Heat Sink Fan

FN3-1	TB3-6R		
FN3-2	TB3-7R		

VERTICAL PLATE ASSEMBLY

P60 - AC Power to DC Supplies

P60-1	PS1-1	BLUE	AC Neutral
P60-2	PS2-S+	GREEN	AC GND
P60-3	PS1-2	BLACK	AC Line

твз

TB3-1	R3-2	Q1-D	BLACK	DC to Pass FET
TB3-2	R3-1	ACSW3-C+	BLACK	DC Supply

TB3-3			
TB3-4			
TB3-5			
TB3-6	FN3-1	TB1-6R	Switched Tool Power Primary
TB3-7	FN3-2	TB1-4R	120V Switched Tool Power Primary
TB3-8			

R3 - 50 Ohm

R3-1	TB3-2L	BLACK	DC to Pass Transistors
R3-2	TB3-1L	BLACK	DC Supply

PS1 - (+)5 Volt Supply

PS1-1	P60-1	PS1-3	BLUE		AC Neutral (Switched)
PS1-2	P60-3	PS1-4	BLACK		AC Line (Switched)
PS1-3	PS2-1	PS1-1	BLUE		AC Neutral (Switched)
PS1-4	PS2-2	PS1-2	BLACK		AC Line (Switched)
PS1-S+	CC11-19	CC13-19	BLACK	TPSD-J5- 1 DSP_J2- 1	+5 Volt
PS1-S-	PS2-S+	CC13-20	GREEN	GND LUG DSP_J2- 2	Ground

PS2 - (-)15V Supply

PS2-1	PS1-3		BLUE		
PS2-2	PS1-4		BLACK		
PS2-3	PS3-3		BLUE		
PS2-4	PS3-2		BLACK		
PS2-S+	P60-2	PS3-S- PS1-S-	GREEN	CC11-20	Ground
PS2-S-	CC10-21	TPSD-J5-3	BLACK		-15 Volt

PS3 - (+)15V Supp<u>ly</u>

PS3-1	PS3-3		BLUE	
PS3-2	PS2-4		BLACK	
PS3-3	PS2-1		BLUE	
PS3-4	PS3-2		BLACK	
PS3-S+	CC10-22	TPSD-J5-4	BLACK	+15 Volt
PS3-S-	PS2-S+	TPSD-J5-2	GREEN	Ground

CARD CAGE ASSEMBLY

CC1 – TELA

CC1-11	CC14-35		WHITE	Down link termination control
CC1-16	CC3-16		WHITE	I2C Clock
CC1-17	CC3-17		WHITE	I2C Data
CC1-19	CC1-41	CC2-41	BLACK	+5V
CC1-20	CC1-42	CC2-42	GREEN	GND
CC1-21	CC1-43	CC2-43	BLACK	-15V
CC1-22	CC1-44	CC2-44	BLACK	+15V
CC1-23	CC2-34		BLACK	TELA Downlink to Line
CC1-26	CC14-31		WHITE	Downlink Telemetry (DSP DAC2)
CC1-41	CC1-19	AUX4-21	BUSS	+5V
CC1-42	CC1-20	AUX4-22	BUSS	GND
CC1-43	CC1-21	AUX4-23	BUSS	-15V
CC1-44	CC1-22	AUX4-24	BUSS	+15V

CC2 – PRELAYS

CC2-1	CC6-2		BLACK	(I Meas In+)
000.0				(H) EXT Power
002-2	(H)J1-B			High
CC2-3	(H)J1-E			(H) EXT Power Low
CC2-5	CC2-38		BLACK	Tool Power to Sondex Relay
CC2-6	TPSD-J2-2	{TPSD-J2-1}	BLACK	TP High Side
				TELA Enable
CC2-7	CC6-32		WHITE	Control - I2CInit=21=10
CC2-8	CC6-37	{J42-18}	WHITE	Tool Power Gate - I2CInit=21=40
CC2-9	CC6-35		WHITE	Low Termination - I2CInit=21=02
CC2-10	CC6-31		WHITE	Polarity Control - I2CInit =21=20
CC2-13	CC13-13		WHITE	Load Cell Cal Drive - I2CInit=22=02
CC2-15	CC6-6		WHITE	Sondex Enable - I2CInit=22=80
CC2-16	CC6-12		WHITE	Load Cell Cal Control - I2CInit=22=02
CC2-17	SDX_SKT1			Sondex
CC2-18	CC2-26	{CC6-1}	BLACK	Enabled Line
CC2-19	CC2-41	CC3-41	BUSS	+5V
CC2-20	CC2-42	CC3-42	GREEN	GND
CC2-21	CC2-43	CC3-43	BUSS	-15V

CC2-22	CC2-44	CC3-44	BUSS		+15V
CC2-23	CC2-41		BLACK		(+5V) TP Light Supply
CC2-24	J42-14		BLACK		(LP3-2+) Tool Power Light
CC2-25	TPSD-J2-4	{TPSD-J2-3}	BLACK	{ACSW3- C-}	Low Side Reg. Tool Power
CC2-26	CC2-18	CC6-1	BLACK		Enabled Line
CC2-27	J7	{J12}			(Line Input)
CC2-28	CC2-42		GREEN		Line To Ground
CC2-30	CC2-35	CC2-40	BLACK	{R2-2}, {CC7-23}	(Line Input) Termination Resistor
CC2-31	R2-1	{R1-1}	BLACK	(H)L1-1	Line Termination
CC2-33(H)	CC6-18(H)				External Power Enable - I2CInit=21=80
CC2-34	CC1-23		BLACK		TELA Downlink
CC2-35	CC2-30	R2-2	BLACK	{CC2- 40}, {CC7-23}	(Line Input) Termination Resistor
CC2-37	R1-2	(H)L1-2	BLACK		Line Termination
CC2-38	CC2-5		BLACK		Tool Power to Sondex Relay
CC2-39	SDX_J1-4		BLACK		Sondex Tool Power
CC2-40	CC2-30	CC3-12	BLACK	{CC2- 30}{CC2- 35}	
CC2-41	CC2-19	CC1-19	BLACK	CC2-23	+5V
CC2-42	CC2-20	CC1-20	GREEN	CC2-28	GND
CC2-43	CC2-21	CC1-21	BUSS		-15V
CC2-44	CC2-22	CC1-22	BUSS		+15V

CC3 -Line Aux (Not Installed)

CC3-4	CC13-27		WHITE		Signal Out (Base-4)
CC3-7	CC6-11		WHITE		I2CInit=22=04
CC3-8	CC6-13		WHITE		I2CInit=22=01
CC3-10	CC3-12	CC7-23	BLACK		Line Input
				{CC2- 30}{CC2-	
CC3-12	CC3-10	CC2-40	BLACK	35}	Line Input
CC3-16	CC1-16	CC6-16	WHITE		I2C Clock
CC3-17	CC1-17	CC6-17	WHITE		I2C Data
CC3-19	CC3-41	CC4-41		(B)J45-2	+5V
CC3-20	CC3-42	CC4-42	BUSS		GND
CC3-21	CC3-43	CC4-43			-15V
CC3-22	CC3-44	CC4-44	BUSS		+15V
CC3-41	CC2-19	CC3-19	BUSS		+5V
CC3-42	CC2-20	CC3-20	GREEN		GND
CC3-43	CC2-21	CC3-21	BUSS		-15V

CC3-44 CC2-22 CC3-22 BUSS	+15V
---------------------------	------

CC4 - SPARE

CC4-19	CC4-41	CC5-41	BLACK	+5V
CC4-20	CC4-42	CC5-42	GREEN	GND
CC4-21	CC4-43	CC5-43	BUSS	-15V
CC4-22	CC4-44	CC5-44	BUSS	+15V
CC4-41	CC3-19	CC4-19	BUSS	+5V
CC4-42	CC3-20	CC4-20	GREEN	GND
CC4-43	CC3-21	CC4-21	BUSS	-15V
CC4-44	CC3-22	CC4-22	BUSS	+15V

CC5 – SPARE

CC5-19	CC5-41	CC6-41	BUSS	+5V
CC5-20	CC5-42	CC6-42	GREEN	GND
CC5-21	CC5-43	CC6-43	BUSS	-15V
CC5-22	CC5-44	CC6-44	BUSS	+15V
CC5-41	CC4-19	CC5-19	BUSS	+5V
CC5-42	CC4-20	CC5-20	GREEN	GND
CC5-43	CC4-21	CC5-21	BUSS	-15V
CC5-44	CC4-22	CC5-22	BUSS	+15V

CC6 - PSXD

CC6-1	CC2-26	{CC2-18}	BLACK		Ve Meas In+
CC6-2	CC2-1		BLACK		I Meas In+
CC6-5	J45-1		BLACK		+5V Regulated to tool Voltage pots
CC6-6	CC2-15		WHITE		I2CInit=22=80 (Sondex Enable)
CC6-7					I2CInit=22=40
CC6-8					I2CInit=22=20
CC6-9					I2CInit=22=10
CC6-10					I2CInit=22=08
CC6-11	CC3-7		BLACK		I2CInit=22=04
CC6-12	CC2-16		WHITE		I2CInit=22=02 (LLM Relay Control)
CC6-13	CC3-8		WHITE		I2CInit=22=01
CC6-15	(B)J45-5				PFC Switch Indicator
CC6-16	CC3-16	CC9-16	BUSS	CC7-38	SDA - I2C Clock
CC6-17	CC3-17	CC7-17	WHITE		SCL - I2C Data
CC6-18(H)	CC2-33(H)				I2CInit=21=80 (Halliburton External Pwr)
CC6-19	CC6-41	CC7-41	BUSS		+5V
CC6-20	CC6-42	CC7-42	GREEN	CC6- 4	GND

CC6-21	CC6-43	CC7-43	BUSS		-15V
CC6-22	CC6-44	CC7-44	BUSS		+15V
CC6-24	J42-6		WHITE		VM-HI
CC6-25	J42-10		WHITE		СМ-НІ
CC6-26	CC13-29		WHITE		TVOLT (Base-2)
CC6-27	CC13-30		WHITE		TCURR (Base-1)
CC6-28	J42-3		WHITE		+5V PU for Manual Polarity Control
CC6-29	J42-1		WHITE		High -> POS, GND -> NEG
CC6-30	J42-2		WHITE		Open -> AUTO, GND -> Pos/Neg
CC6-31	CC2-10		WHITE		I2CInit=21=20 (Polarity w/ Manual Override)
CC6-32	CC2-7		WHITE		I2CInit=21=10 (TELA Enable)
CC6-33	CC11-25		WHITE		I2CInit=21=08 (Audio Signal Control)
CC6-34					I2CInit=21=04
CC6-35	CC2- 9		WHITE		I2CInit=21=02 Low Termination
CC6-36					I2CInit=21=01
CC6-37	CC2-8	J42-18	WHITE		I2CInit=21=40 (Line Enable Control)
CC6-38	TPSD-J1-1		WHITE		Voltage Control to TPS
CC6-39	J45-6		BLACK		Pos Control
CC6-40	J45-3		BLACK		Neg Control
CC6-41	CC5-19	CC6-19	BUSS		+5V
CC6-42	CC5-20	CC6-20	GREEN	J42-4	GND
CC6-43	CC5-21	CC6-21	BUSS		-15V
CC6-44	CC5-22	CC6-22	BUSS		+15V

CC7 - ANASW

CC7-8	WHP1-D		WHITE	WHP1 Excitation
CC7-9	CC9-23		WHITE	Signal to CBL01
CC7-10	WHP1-B		WHITE	+(4-20MA) Input Positive
CC7-11	WHP1-A		WHITE	-(4-20MA) Input Negative
CC7-12	CC13-8		WHITE	WHP1 Signal
CC7-13	WHP2-B		WHITE	+(4-20MA) Input Positive
CC7-14	WHP2-A		WHITE	-(4-20MA) Input Negative
CC7-15	CC13-7		WHITE	WHP2 Signal
CC7-16	CC7-38	CC8-38	BUSS	SCL - I2C Clock
CC7-17	CC6-17	CC8-39	BUSS	SDA - I2C Data
CC7-18	WHP2-D		WHITE	WHP2 Excitation

CC7-19	CC7-41	CC8-41	BUSS	J42-7	+5V
CC7-20	CC7-42	CC8-42	WHITE	J42-5 WHP1- E	GND
CC7-21	CC7-43	CC8-43	BUSS		-15V
CC7-22	CC7-44	CC8-44	BUSS		+15V
CC7-23	CC3-10	{R2-2}, {CC2-30}, {CC2- 35}	BLACK		Line Input
CC7-28	CC8-5		WHITE		Signal to CCL
CC7-29	(B)AUX5-2				PFC Signal
CC7-31					Spare output
CC7-32	CC11-5		WHITE		Drive to Audio
CC7-33	CC12-3	{CC14-23}	WHITE		Drive to MTT
CC7-38	CC6-16	CC7-16	BUSS		SDA - I2C Data
CC7-39	J42-15		BLACK		Audio Speaker Phono Jack
CC7-41	CC6-19	CC7-19	BUSS		+5V
CC7-42	CC6-20	CC7-20	GREEN	J42-16 WHP2-E	GND
CC7-43	CC6-21	CC7-21	BUSS		-15V
CC7-44	CC6-22	CC7-22	BUSS		+15V

CC8 - CCLVF

CC8-5	CC7-28		WHITE		Signal from ANASW
CC8-7	J16		WHITE		Passive CCL Input
CC8-10					+15V
CC8-16	CC8-38	CC9-38	WHITE	TPSD-J1-1	SCL - I2C Clock
CC8-17	CC8-39	CC9-39	WHITE	TPSD-J1-2	SDA - I2C Data
CC8-19	CC8-41	CC9-41	BLACK	J42-11	+5V
CC8-20	CC8-42	CC9-42	GREEN	J42-9	GND
CC8-21	CC8-43	CC9-43	BUSS		-15V
CC8-22	CC8-44	CC9-44	BUSS		+15V
CC8-27	CC13-28		WHITE		CCL Signal (Base-3)
CC8-38	CC7-16	CC8-16	BUSS		SDA - I2C Data
CC8-39	CC7-17	CC8-17	BUSS		SCL - I2C Clock
CC8-41	CC7-19	CC8-19	BUSS		+5V
CC8-42	CC7-20	CC8-20	WHITE	J42-13	GND
CC8-43	CC7-21	CC8-21	BUSS		-15V
CC8-44	CC7-22	CC8-22	BUSS		+15V

CC9 - CBL1D

CC9-10	CC14-8		WHITE		Sonic Amplitude Signal (DSP IN1)
CC9-12	CC10-3	{CC14-4}	WHITE		Sync/Pulse Signal
CC9-16	CC9-38	CC13-16	BUSS		SCL
CC9-17	CC9-39	CC13-17	BUSS		SDA - I2C Data
CC9-18	CC14-7		WHITE		Threshold Signal
CC9-19	CC9-41	CC10-41	BUSS		+5V
CC9-20	CC9-42	CC10-42	BUSS		GND
CC9-21	CC9-43	CC10-43	BUSS		-15V
CC9-22	CC9-44	CC10-44	BUSS		+15V
CC9-23	CC7-9		WHITE		Signal from ANASW
CC9-30	CC14-30		WHITE		Sonic AUX (DSP IN9)
CC9-38	CC8-16	CC9-16	BUSS		SDA - I2C Data
CC9-39	CC8-17	CC9-17	BUSS		SCL - I2C Clock
CC9-41	CC8-19	CC9-19	BLACK	J42-20	+5V
CC9-42	CC8-20	CC9-20	GREEN	J42-19	GND
CC9-43	CC8-21	CC9-21	BUSS		-15V
CC9-44	CC8-22	CC9-22	BUSS		+15V

CC10 - CBL02

CC10-3	CC9-12	CC14-4	WHITE		Sync Signal
CC10-17	CC14-11		WHITE		Neg Sync Inhibit (DSP DO1)
CC10-18	CC14-32		WHITE		Pos Sync Inhibit (DSP DO0)
CC10-19	CC10-41	CC11-41	BUSS		+5V
CC10-20	CC10-42	CC11-42	BUSS		GND
CC10-21	CC10-43	CC11-43	BLACK	PS2-S-	-15V
CC10-22	CC10-44	CC11-44	BLACK	PS3-S+	+15V
CC10-31					NEG Sync
CC10-33					POS SYNC
CC10-36	CC10-41		BLACK		+5V (-SYNCINH)
CC10-37	CC14-18		WHITE		Sync Detect
CC10-38	CC14-10		WHITE		Sync Level (DSP DAC0)
CC10-39	CC14- 9		WHITE		Threshhold Level (DSP DAC1)
CC10-41	CC9-19	CC10-19	BLACK	CC10-36	+5V
CC10-42	CC9-20	CC10-20	BUSS		GND
CC10-43	CC9-21	CC10-21	BUSS		-15V
CC10-44	CC9-22	CC10-22	BUSS		+15V

CC11 – AUDIO

CC11-5	CC7-32		WHITE		Signal from ANASW
CC11-6	CC14-6		WHITE		AUDIO x 10 (DSP IN3)
CC11-7	CC14-5		WHITE		AUDIO x 1 (DSP IN4)
CC11-8	CC14-3		WHITE		AUDIO X .1 (DSP IN6)
CC11-9	CC14-2		WHITE		AUDIO X .01 (DSP IN7)
CC11-19	CC11-41	CC12-41	BLACK	PS1-S+	+5V
CC11-20	CC11-42	CC12-42	GREEN	PS2-S+	GND
CC11-21	CC11-43	CC12-43	BUSS		-15V
CC11-22	CC11-44	CC12-44	BUSS		+15V
CC11-25	CC6-33		WHITE		Audio Signal Control (I2CInit=21=08)
CC11-41	CC10-19	CC11-19	BUSS		+5V
CC11-42	CC10-20	CC11-20	BUSS		GND
CC11-43	CC10-21	CC11-21	BUSS		-15V
CC11-44	CC10-22	CC11-22	BUSS		+15V

CC12 -MTT/AUX

CC12-3	CC7-33	CC14-23	WHITE	Input Signa	al
CC12-18	CC13-26		WHITE	MTT Signa (Base-4)	ıl
CC12-19	CC12-41		BUSS	+5V	
CC12-20	CC12-42	J6-E/(H)J6-B (SHLD)	BUSS	GND	
CC12-21	CC12-43	CC13-43	BUSS	-15V	
CC12-22	CC12-44	CC13-44	BUSS	+15V	
CC12-41	CC11-19	CC12-19	BUSS	+5V	
CC12-42	CC11-20	CC12-20	BUSS	GND	
CC12-43	CC11-21	CC12-21	BUSS	-15V	
CC12-44	CC11-22	CC12-22	BUSS	+15V	

CC13 - USB44

					T
CC13-1			\ A / I · I		BASE - 16
CC13-2	AUX4-2		WHILE		BASE- 15
CC13-3	AUX4-3		WHITE		BASE - 14
CC13-4	AUX4-4		WHITE		BASE - 13
CC13-5	AUX4-5		WHITE		BASE - 12
CC13-6	AUX4-6		WHITE		BASE - 11
CC13-7	CC7-15		WHITE		BASE - 10 (WHP2)
CC13-8	CC7-12		WHITE		Base - 9 (WHP1)
CC13-9	F2-2	{J8-D, (H)J8-J}	BLACK		Encoder Power to Fuse
CC13-10	Ј8-В	(Н)Ј8-В	WHITE		Encoder Phase B
CC13-11	J8-A	(H)J8-A	WHITE		A Topsion
CC13-12	J6-D/(H)J6-C		WHITE		Excitation +
CC13-13	CC2-13		WHITE		Drive - I2CInit=22=02
CC13-14	HUB_J2-3			{Black}	USB Telemetry
CC13-15	HUB_J2-2			(Red}	USB Telemetry
CC13-16	CC9-16		WHITE		SCL - I2C Clock
CC13-17	CC9-17		WHITE		SDA - I2C Data
CC13-18	(H)J6-G				Cal Relay
CC13-19	CC13-41	CC14-41	BUSS	PS1-S+	+5V
CC13-20	CC13-42	CC14-42	BUSS	PS1-S-	GND
	{Shield}	HUB_J2-4			
CC13-21	CC13-43	CC14-43	BUSS		-15V
CC13-22	CC13-44	CC14-44	BUSS		+15V
CC13-23					BASE-8
CC13-25	AUX1		WHITE		BASE-6
CC13-26	CC12-18		WHITE		BASE-5 (MTT)
CC13-27	CC3-4		WHITE		BASE-4 (LineAux Signal)
CC13-28	CC8-27		WHITE		BASE-3 (CCL)
CC13-29	CC6-26		WHITE		BASE-2 (TVOLT)
CC13-30	CC6-27		WHITE		BASE-1 (TCURR)
CC13-31					CTR2
CC13-32					CTR1
CC13-33					
CC13-34	AUX4-9		WHITE		CTR4
CC13-35	AUX4-10		WHITE		CTR3
CC13-36					Line Texting
CC13-38	J6-A/(H)J6-A			(BLK)	Line Lension Input Negative
CC13-40	J6-B/(H)J6-E			(RED)	Input Positive
CC13-41	1	1			1
001011	CC13-19	HUB_J9-3	BLACK		+5V

CC13-43	CC12-21	CC13-21	BUSS	-15V
CC13-44	CC12-22	CC13-22	BUSS	+15V

CC14 – DSP-AUX

CC14-1				DSP IN8 (Script
0014-1				DSP IN7 (Script
CC14-2	CC11-9		WHITE	Ch6) Audio x .01
CC14 3	CC11 8		WHITE	DSP IN6 (Script
0014-3			VVIIIIL	DSP IN5 (Script
				Ch4) Sync/Pulse
CC14-4	CC10-3	{CC9-12}	VVHILE	Signal
CC14-5	CC11-7		WHITE	Ch3) Audio x 1
00110				DSP IN3 (Script
CC14-6	CC11-6		WHITE	Ch2) Audio x 10
				DSP IN2 (Script
CC14-7	CC9-18		WHITE	Signal
				DSP IN1 (Script
CC14 9	CC0 10		WHITE	Ch0) Sonic
0014-0	0010 00		W/HITE	
0014-9	0010-39			DSP DACT
CC14-10	CC10-38		VVIIIE	DSP DAC0
CC14-11	CC10-17		WHITE	Sync Inhibit)
CC14-12				DSP DO3
CC14-13				DSP DO5
CC14-14				DSP DO7
CC14-15				DSP DO9
CC14-16				DSP DI1
CC14-17				DSP DI3
	0.040.07			DSP INT0 - Sync
CC14-18	CC10-37			Detect
CC14-19	CC14-41		BLACK	+5V
CC14-20	CC14-42		BUSS	GND
CC14-21	CC14-43		BUSS	-15V
CC14-22	CC14-44		BUSS	+15V
				DSP IN16 (Script
CC14-23	CC12-3	{CC7-33}	WHITE	Sig
				DSP IN15 (Script
CC14-24				Ch14)
CC14-25				DSP IN14 (Script Ch13)
				DSP IN13 (Script
CC14-26				Ch12)
CC14-27				Ch11)
				DSP IN11 (Script
CC14-28				Ch10)
CC14-29				Ch9)
				DSP IN9 (Script
CC14-30	CC9-30		VVHILE	Ch8) Sonic AUX

CC14-31	CC1-26		WHITE		DSP DAC2 (TELA Downlink Telemetry)
CC14-32	CC10-18		WHITE		DSP DO0 (Pos Sync Inhibit)
CC14-33					DSP DO2
CC14-34					DSP DO4
CC14-35	CC1-11		WHITE		DSP DO6 Downlink Termination
CC14-36					DSP DO8
CC14-37					DSP DI0
CC14-38					DSP DI2
CC14-39					DSP DI4
CC14-40					DSP INT1
CC14-41	CC13-19	CC14-19	BUSS	HUB_J9-2	+5V
CC14-42	CC13-20	CC14-20	BUSS	HUB_J9-3	GND
CC14-43	CC13-21	CC14-21	BUSS		-15V
CC14-44	CC13-22	CC14-22	BUSS		+15V

CC15-SDSDSP

DSP J2

DSP_J2-1	PS1-S+	GREEN	
DSP_J2-2	PS1-S-	BLACK	

DSP_J5

DSP_J5-1	HUB_J3-1		{Shield}	
DSP_J5-2				
DSP_J5-3	HUB_J3-2		{Red}	
DSP_J5-4	HUB_J3-3		{Black}	

J41 - AC Power

J41-1	TB1-3R	BLUE	{S1-1}	Switched Neutral
J41-2				
J41-3	TB1-5L	BLACK	{S1-3}	Switched AC Load
J41-4	JAC-1	BLUE	{S1-2}	AC Neutral
J41-5	LUG	GREEN		
J41-6	F1-2	BLACK	{S1-4}	Fused AC Load

J42 - Voltage Meters and Controls Power

J42-1	CC6-29		WHITE	High -> POS, GND -> NEG
J42-2	CC6-30		WHITE	Open -> AUTO, GND -> Pos/Neg
J42-3	CC6-28		WHITE	+5V PU
J42-4	CC6-42	{S3-3,4,6}	GREEN	GND (TP Switch)
J42-5	CC4-20		GREEN	GND (VM-LO)
J42-6	CC6-24		WHITE	VM-HI
J42-7	CC7-19		BLACK	+5V (VM-V+)
J42-7	CC7-19		GREEN	+5V (VM-V+)
J42-8	CC4-42		GREEN	
J42-9	CC8-20		WHITE	GND (CM-LO)
J42-10	CC6-25		BLACK	CM-HI
J42-11	CC8-19		GREEN	+5V (CM-V+)
J42-12	CC5-20		GREEN	
J42-13	CC8-42		GREEN	GND (LP3-1-) Enable Lamp
J42-14	CC2-24		BLACK	LP3-2+
J42-15	CC7-39		BLACK	Audio Speaker
J42-16	CC7-42		GREEN	GND (Speaker Gnd)
J42-17	ACSW3-R+		BLACK	Tool Power Enable
J42-18	CC6-37	{CC2-8}	WHITE	Safety CNTL
J42-19	CC9-42		GREEN	GND (LP2-1-)
J42-20	CC9-41		BLACK	+5V (TP Switch)

J43-USB Face Plate

J43-1	HUB_J8-3	{Black}	{White}	USB-
J43-2			{Shield}	SHIELD
J43-3	HUB_J8-1	{Shield}	{Black}	GND
J43-4	HUB_J8-2	{Red}	{Green}	USB+
J43-5				
J43-6	HUB_J8-4	22 GA	{Red}	+5V

J45 - Voltage Control Pots

J45-1	CC6-5	BLACK	+5V Regulated
(B)J45-2	(B)CC4-41		+5V PFC Switch
J45-3	CC6-40	BLACK	Neg Control
J45-4	CC3-20	GREEN	GND to Voltage Pots
J45-5	(B)C6-15	GREEN	PFC Switch Indicator
J45-6	CC6-39	BLACK	Pos Control

(B)J65 - PFC Switch
(B)J65-1	(B)TPSD-J3-2		{S4-5}	
(B)J65-2				
(B)J65-3	(B)TPSD-J3-1		{S4-6}	

FACE PLATE ASSEMBLY

P41 - AC Power

P41-1	S1-1	{LP1-1} {FN1-1}	BLUE	{TB1-3}	Switched Neutral
P41-2					
P41-3	S1-3	{LP1-2} {FN1-2}	BLACK	{TB1-5}	Switched AC Load
P41-4	S1-2	{JAC-1}	BLUE		AC Neutral
P41-5	LUG		GREEN		
P41-6	S1-4	{F1-2}	BLACK		Fused AC Load

S1 - AC Power Switch

S1-1	S1-1	{LP1-1} {FN1-1}	BLUE	{TB1-3}	Switched Neutral
S1-2			BLUE		
S1-3	S1-3	{LP1-2} {FN1-2}	BLACK	{TB1-5}	Switched AC Load
S1-4	S1-2	{JAC-1}	BLACK		AC Neutral

LP1 - AC Power Indicator

LP1-1	S1-1	FN1-1	BLACK	{P41-1}	
LP1-2	S1-3	FN1-2	BLACK	{P41-3}	

FN1 - Faceplate Fan

FN1-1	P41-3	LP1-2	BLACK	{FN1-2}	Switched AC Load
FN1-2	P41-6		BLACK		Fused AC Load

P42 - Voltage Meters and Controls

P42-1	53-2	{CC6-29}	WHITE		High -> POS, GND - > NEG
P42-2	S3-5	{CC6-30}	WHITE		Open -> AUTO, GND -> Pos/Neg
P42-3	S3-1	{CC6-28}	WHITE		+5V PU
P42-4	S3-4	{S3-3}{S3-6}	GREEN	{CC6-42}	GND (TP Switch)
P42-5	VM-J1-4	{CC4-20}	GREEN		GND (VM-LO)
P42-6	VM-J2-2	{CC6-24}	WHITE		VM-HI
P42-7	VM-J1-6	{CC7-19}	BLACK		+5V (VM-V+)
P42-8	CC4-42		GREEN		VM-GRN-P2-4- 42
P42-9	CM-J1-4	{CC8-20}	GREEN		GND (CM-LO)
P42-10	CM-J2-2	{CC6-25}	WHITE		CM-HI
P42-11	CM-J1-6	{CC8-19}	BLACK		+5V (CM-V+)
P42-12	CC5-20		GREEN		CM-GRN-P4- 4
P42-13	LP3-1(-)	{CC8-42}	GREEN		GND (LP3-1-) Enable Lamp
P42-14	LP3-2(+)	{CC2-24}	BLACK		LP3-2+ Enable Lamp
P42-15	J47-1	{CC7-39}	BLACK		Audio Speaker Phono Jack
P42-16	J47-2	{CC7-42}	GREEN		GND (Speaker Gnd)
P42-17	S2-3	{ACSW3-R+}	BLACK		Tool Power Control
P42-18	S2-4	{CC6-37}	WHITE		Safety CNTL
P42-19	L P2-1(-)	{CC9-42}	GREEN		GND (LP2-1-) Tool Power
P42-20	S2-2	{CC9-41}	BLACK		+5V (TP Switch)

S2 - Tool Power Switch

S2-1	LP2-2(+)		BLUE	
S2-2	P42-20	{CC9-41}	BLACK	+5V
S2-3	P42-17	{ANSW3-R+}	BLUE	Tool Power Control
S2-4	P42-18	{CC6-37}	BLACK	

LP2 - Tool Power Switch Indicator

LP2-1(-)	P42-19	{CC9-41}	GREEN	GND
LP2-2(+)	S2-1		BLACK	

S3 - Auto / Manual Polarity Switch

S3-1	P42-3	{cc6-28}	WHITE		+5 PU
S3-2	P42-1	{CC6-29)	WHITE		High -> POS, GND -> NEG
S3-3	S3-4	S3-6	GREEN	{P42-4}	GND

S3-4	S3-3	S3-6	GREEN	P42-4	GND
S3-5	P42-2		WHITE		Open -> AUTO, GND -> Pos/Neg
S3-6	S3-3	S3-4	GREEN	{P42-4}	GND

VM - Panel Voltage Meter (Old Style)

VM-INLO	P42-5	WH	TE	GND (VM-LO)
VM-INHI	P42-6	WH	TE	VM-HI
VM-V+	P42-7	WH	TE	+5V (VM-V+)

CM - Panel Current Meter (Old Style)

CM-INLO	P42-9	WHITE	GND (CM-LO)
CM-INHI	P42-10	WHITE	CM-HI
CM-V+	P42-11	WHITE	+5V (CM-V+)

VM - Panel Voltage Meter (Red Segment Style)

VM-J1-4	P42-8	GREEN	GND (VM-LO)
VM-J1-6	P42-7	BLACK	+5V (VM-V+)
VM-J2-1	P42-5	GREEN	VM-LO
VM-J2-2	P42-6	WHITE	VM-HI
VM-J2-5	VM-J2-6		Ref Out
VM-J2-6	VM-J2-5		Ref In

CM - Panel Current Meter (Red Segment Style)

CM-J4-4	P42-12	GREEN	GND (CM-LO)
CM-J4-6	P42-11	BLACK	+5V (CM-V+)
CM-J3-1	P42-9	GREEN	CM-LO
CM-J3-2	P42-10	WHITE	CM-HI
CM-J3-5	CM-J2-6		Ref Out
CM-J3-6	CM-J2-5		Ref In

LP3- Line Enable Lamp

LP3-1(-)	P42-13	{CC8-42}	GREEN	GND (LP3-1-)
LP3-2(+)	P42-14	{CC2-24}	BLACK	LP3-2+

J47 - Audio Jack

J47-1	P42-15	{CC7-39}	BLACK	Audio Speaker
J47-2	P42-16	{CC7-42}	GREEN	GND (Speaker Gnd)

P43-USB Faceplate Connector {OLD}

P43-1	J48-WHT		USB-
P43-2	J48-GRY		SHIELD
P43-3	J48-BLK		GND
P43-4	J48-GRN		USB+
P43-5			
P43-6	J48-RED		+5V

P45 - Voltage Control Pots

P45-1	R4-3	{R5-3}{CC6-5}	BLACK	+5V Regulated
(B)P45-2	(B)S4-2	{CC4-41}	WHITE	+5V
P45-3	R4-2	{CC6-40}	BLACK	Negative Control
P45-4	R4-1	{R5-1}{CC3-20}	GREEN	GND
P45-5	S4-1	{(B)CC6-15}	GREEN	PFC Switch
P45-6	R5-2	{CC6-39}	BLACK	Positive Control

R4- Negative Voltage Adjust

R4-1	R5-1	P45-4	GREEN	{CC3-20}	GND
R4-2	P45-3	{CC6-40}	BLACK		Negative Control
R4-3	R5-3	P45-1	BLACK	{CC6-5}	+5V Regulated

R5- Positive Voltage Adjust

R5-1	R4-1	{P45-4}{CC3-20}	GREEN	GND
R5-2	P45-6	{CC6-39}	BLACK	Positive Control
R5-3	R4-3	{P45-1}{CC6-5}	BLACK	+5V Regulated

(B)P65 - PFC Switch

(B)P65-1	(B)S4-5	(B)TPSD-J3-2		
(B)P65-2				
(B)P65-3	(B)S4-6	(B)TPSD-J3-1		

(B)S4 - PFC Switch

(B)S4-1	(B)P45-5	{(B)CC6-15}		
(B)S4-2	(B)P45-2	{CC4-41}		
(B)S4-3				
(B)S4-4				
(B)S4-5	(B)P65-1	{(B)TPSD-J3-2}		
(B)S4-6	(B)P65-3	{(B)TPSD-J3-1}		

Section

21 Checks-Out Procedure

A. Panel Information

Company: _		Checked By:
Panel Type:	Serial#:	Key#:
Date:/_	_/Key Code#:	

A. Record version of all boards installed – "X" indicates not installed

- Panel must be "OFF" No power on before removing or installing any boards, during this procedure.
- Acquisition should be closed, every time that it calls for "Turning Panel OFF"
- Attach P Touch Card Slot Identification Tape, plotter label, and panel type labels.
- Remove all boards from the Card Cage located inside the Interface Panel

BOARD	VER.	BOARD	VER.	BOARD	VER.
USBHUB		TPSD		DSPAUX	
SDSDSP		USB44		PSXD	
PRELAYS		ANASW		CCL	
CB1D		CBL02		AUDIO	
AFP		MTT		TELA	

TPSD, USBHUB are permanent boards located at the rear of the panel

BOARDS FROM LEFT TO RIGHT

CC1-	TELA
CC2-	PRELAYS
CC3-	FREEPOINT
CC4-	SPARE
CC5-	SPARE
CC6-	PSXD
CC7-	ANASW
CC8-	CCL
CC9-	CBL1D
CC10-	CBL02
CC11-	AUDIO
CC12-	MTT
CC13-	USB44
CC14-	DSPAUX
CC15-	DSP

B. Check Power Supplies voltages on card connectors

+15 Volts	@ pin 22 - 44
-15 Volts	@ pin 21- 43
Ground	@ pin 20- 42
+ 5 Volts	@ pin 19- 41

C. Sondex Ultralink Board Pre-Wiring

(OPEN BACK PLATE OF THE PANEL TO DO THE FOLLOWING) Verify the following connections:

Connector SDXJ1 Wiring (4 pin connector)

J1-1 to CC2-39. J1-4 to TB1-1

Connector SKT1 Wiring

SKT1 (Coaxial cable) center conductor to CC2-17.

Connector SDX J12 Wiring (5 pin connector)

J12-3 (AWG 22) connect to TPSD-J5-4 (+5 VDC) J12-4 (AWG 22) connect to TPSD-J5-3 (GND) J12-1 (AWG 22) connect to TPSD-J5-2 (-15VDC) J12-5 (AWG 22) connect to TPSD-J5-1 (+15 VDC)

Connector SDXJ5 Wiring (5 pin connector)

J5-5 (White AWG 22) connect to HUB-J9-4 J5-3 (Red AWG 22) connect to HUB-J9-3 J5-2 (Black AWG 22) connect to HUB-J49-2

D. USBHUB-R13 Pre-Check and USBHUB

Close All in acquisition software and Turn Interface Power "OFF"

All USB44-R7 – before installing, check for the following. J2 – Place jumper pin on 1-3 (right side) Make sure C26 is **NOT** installed (near U4) Jumper Near to C23 and C24 Standard USB44-R7 – before installing, check for the following. IC14 = Pin 1-3 shorted R12 = shortedR14 = 24.9 ohms R19 = 5.6 Kohms C25 = Not InstalledC29 = Not InstalledK1 = Not InstalledHalliburton USB44-R7 – before installing, check for the following. IC14 = LM78L12 Installed R12 = 3.9 Ohm Installed R14 = Not InstalledR19 = 249 Ohm Installed C25 = .01 UF Installed C29 = .33 UF Installed

K1 = Installed

Make sure Interface is "OFF" - No Power

Install USB44 board Install DSPAUX and SDSDSP boards. DSPAUX- should be on an extender board with an extender ribbon to the DSP board. Check polarity of Power Connectors to DSP board J2. Looking at component side of the board, left pin is ground and right pin is +5VDC. On DSP board the two white wires of J2 should go up towards the top of the board. On J5 white wire is ground.

With Interface Panel Power "OFF"

Open Windows Device manager, Click on Universal Serial Bus controllers Connect USB cable from computer to front of panel Two new Generic USB Hubs should appear

Safenet Inc. Hardlock Key should appear

Connect USB Device to "Printer" USB port of Hub on rear of panel That Device should appear

Turn Interface Panel Power "ON"

Scientific Data Systems CyStdFX1 Device should appear Scientific Data Systems LOGFX-DSP Device should appear Check remaining 4 USB Port to a response of a USB device

Turn Interface Panel Power "OFF"

Connect USB cable from computer to rear of panel Turn Interface Panel Power "**ON**" – Recheck all of the above devices

E. USB44 Checks

Standard Panel - Check for +15VDC at Pin "D" of tension connector. Check for +5VDC at Pin "D" of encoder connector.

Halliburton Panel – Check for +12V DC at pin "C' of tension connector. Check for +5V DC ad pin "J' of the encoder connector

Put Sample DC Voltage on J9 (Rear Panel BNC-labeled AUX-1). Start Acquisition and verify Base-6 response by clicking "Monitor"-> Devices - Base-6 = Sample DC Voltage +/-0.2

DAMUPCI-1 TCURR 0.002 V DAMUPCI-2 TVOLT 0.003 V DAMUPCI-3 CCL 0.002 V DAMUPCI-4 0.002 V DAMUPCI-5 0.002 V DAMUPCI-6 8.834 V DAMUPCI-7 LTEN 6.226 V DAMUPCI-9 0.003 V DAMUPCI-10 0.002 V DAMUPCI-12 0.001 V DAMUPCI-14 0.001 V DAMUPCI-15 0.002 V DAMUPCI-16 0.001 V DAMUPCI-17 0.000 V DAMUPCI-14 0.001 V DAMUPCI-15 0.002 V DAMUPCI-16 0.002 V DAMUPCI-17 0.000 cps DAMUPCI-18 0.000 usec DAMUPCI-20 0.000 usec DAMUPCI-22 0.000 usec DAMUPCI-23 0.000 usec DAMUPCI-24 0.000 usec DAMUPCI-25 0.000 usec DAMUPCI-26 0.000 usec DAMUPCI-27 0.000 usec DAMUPCI-30 0.000 usec DAMUPCI-31 0.000 usec DAMUP	🔲 Device: DAM	UPCI			
DAMUPCI-6 8.834 V DAMUPCI-7 ITEN 6.226 V DAMUPCI-8 0.005 V DAMUPCI-9 0.003 V DAMUPCI-10 0.002 V DAMUPCI-11 0.001 V DAMUPCI-12 0.000 V DAMUPCI-14 0.001 V DAMUPCI-15 0.002 V DAMUPCI-16 0.002 V DAMUPCI-17 0.000 cps DAMUPCI-18 0.000 usec DAMUPCI-20 0.000 usec DAMUPCI-22 0.000 usec DAMUPCI-23 0.000 usec DAMUPCI-24 0.000 usec DAMUPCI-27 0.000 usec DAMUPCI-28 0.000 usec DAMUPCI-29 0.000 usec DAMUPCI-28 0.000 usec DAMUPCI-29 0.000 usec DAMUPCI-30 0.000 usec DAMUPCI-33 0.000 usec	DAMUPCI-1 DAMUPCI-2 DAMUPCI-3 DAMUPCI-4 DAMUPCI-5	TCURR TVOLT CCL		0.002 0.003 0.003 0.002 0.002	V V V V V
DAMUPCI-7 LTEN 6.226 V DAMUPCI-8 0.005 V DAMUPCI-9 0.003 V DAMUPCI-10 0.002 V DAMUPCI-11 0.001 V DAMUPCI-12 0.000 V DAMUPCI-13 0.001 V DAMUPCI-14 0.001 V DAMUPCI-15 0.002 V DAMUPCI-16 0.002 V DAMUPCI-17 0.000 cps DAMUPCI-18 0.000 usec DAMUPCI-20 0.000 usec DAMUPCI-22 0.000 usec DAMUPCI-24 0.000 usec DAMUPCI-25 0.000 usec DAMUPCI-26 0.000 usec DAMUPCI-27 0.000 usec DAMUPCI-28 0.000 usec DAMUPCI-30 0.000 usec DAMUPCI-31 0.000 usec DAMUPCI-33 0.000 usec	DAMUPCI-6			8.834	V
DAMUPCI-35 0.000 cps DAMUPCI-35 0.000 cps DAMUPCI-36 LSPD 0.000 ft/min DAMUPCI-37 FITTM 400 500	DAMUPCI-7 DAMUPCI-7 DAMUPCI-8 DAMUPCI-10 DAMUPCI-11 DAMUPCI-11 DAMUPCI-12 DAMUPCI-13 DAMUPCI-14 DAMUPCI-14 DAMUPCI-15 DAMUPCI-17 DAMUPCI-17 DAMUPCI-20 DAMUPCI-22 DAMUPCI-22 DAMUPCI-22 DAMUPCI-22 DAMUPCI-22 DAMUPCI-22 DAMUPCI-23 DAMUPCI-28 DAMUPCI-29 DAMUPCI-31 DAMUPCI-33 DAMUPCI-33 DAMUPCI-33 DAMUPCI-34 DAMUPCI-35 DAMUPCI-35 DAMUPCI-35 DAMUPCI-36 DAMUPCI-36 DAMUPCI-36 DAMUPCI-36 DAMUPCI-36 DAMUPCI-36 DAMUPCI-36 DAMUPCI-36 DAMUPCI-36 DAMUPCI-36	LSPD	R		V V V V V V V V V V V V V V V V V V V
DAMUPCI-38 ADPTH 12183.158 ft	DAMUPCI-38	ADPTH		12183.158	ft

Fig. E.1 DAMUPCI

Connect Simulator Box and start Simulator Program. Set Simulator Tension to Low. Open Acquisition. Click on "Action -> Calibrate -> Surface Line Tension". Set calibration values to 0 and 10000. Check that depth responds to Speed and Direction controls.

YSim	0.0	X		
Load		Close		
Start Stop Speed Range C High © Low C High © Low	Gain Speed Direction	Connect		
Low Reference Point High Reference Point	tion - 0000 0 10000	ь b	Accept Cancel	
Tension at Low Reference Tension at High Reference		v v	< Sample << Sample	
imple the Low Referer	nce.			
		and the second s		

Fig. E.2 Surface Tension Calibration

Period: 0.1 sec Total: 5 sec

1.0303

Sensor

LTEN

Tension at Low Reference

Instantaneous Average

0.0000

Click [Begin] to start sampling. When 10 second sampling is complete, click [Accept] to accept the sample

Sensor

LTEN

100% Complete

Units

Begin

Cancel

V

In the Simulator window, Set the tension to High. From the calibration window, sample the high reference.

Tension at Low Reference

Instantaneous Average

1.0303

1.0303

Units

Accept

Reject

٧

Low Reference Point	0	lb	Accept
High Reference Point	10000	Ъ	Cancel
Tension at Low Reference	1.03034	- _v	<< Sample
Tension at High Reference	4.87578	- v	<< Sample

Fig. E.3 Surface Tension Calibration

The calibrations should have a gain in the order of 2500 with a negative offset of the same magnitude. If valid, click on [Accept] to finish the calibration.

Baker Tension

Turn Panel "OFF". Pull USB44 board and remove R19 and R14 so board accepts + 5 Volt tension input. Re-install board and turn panel "ON". Connect Baker Line Tension Check connector to tension input. From Acquisition, click on Monitor -> Sensors. Check that the LTEN sensor reads 1.4 V.

AUX4 - Auxiliary Input Connector

From Acquisition click on Monitor ->Devices -> Base and check the following table for high and low inputs from the test box

Channel	LOW Switch	HIGH Switch
Base-11	0.57	3.63
Base -12	0.73	1.73
Base -13	0.98	0.000
Base -14	1.31	-1.71
Base -15	1.78	-3.63

Source	Name	Value	Units
ASE-1	TCURR	0.0171	V
ASE-2	TVOLT	0.0076	V
ASE-3	CCL	0.0040	v
BASE-4		-10.0000	v
BASE-5		-0.0018	V
BASE-6		-0.0003	V
BASE-7	LTEN	0.0027	V
BASE-8		0.0000	v
BASE-9		0.0000	v
BASE-10		0.0052	V
BASE-11		0.5667	V
BASE-12		0.7343	V
BASE-13		0.9760	V
BASE-14		1.3129	V
BASE-15		1.7841	V
BASE-16		0.0003	V
BASE-17		0.0003	v
BASE-18		0.0003	v
BASE-19		0.0003	V
BASE-20		0.0003	V
BASE-21		0.0003	V
BASE-22		0.0003	V
BASE-23		0.0003	v
BASE-24		0.0000	V
BASE-25		0.0000	V
BASE-26		0.0000	V
BASE-27		0.0000	V
BASE-28		0.0000	V
BASE-29		0.0000	V
BASE-30		0.0000	V
BASE-31	CTR1	0.0000	CDS
BASE-32	CTR2	0.0000	cps
BASE-33	CTR3	1002.8462	CDS
BASE-34	CTR4	1002.8462	cps
BASE-35	1985 (A) (1998	99,9876	CDS

Fig. E.4 CYSTD Low Values

Connect function generator to test points on test box, with 5 volt square wave @ 1 KHz Note response on Base-33 and Base-34 CTR3 / CTR4. Set the switch in HI

Device: (CYSTD		
Source	Name	Value	Units
BASE-1	TCURR	0.0159	V
BASE-2	TVOLT	0.0079	V
BASE-3	CCL	0.0055	V
BASE-4		-10.0000	V
BASE-5		-0.0018	V
BASE-6		-0.0003	V
BASE-7	LTEN	0.0027	V
BASE-8		0.0000	V
BASE-9		0.0009	V
BASE-10		0.0049	V
BASE-11		3.6298	V
BASE-12		1.7343	V
BASE-13		0.0049	V
BASE-14		-1.7169	V
BASE-15		-3.6169	V
BASE-16		-0.0003	V
BASE-17		0.0000	V
BASE-18		0.0000	V
BASE-19		0.0000	V
BASE-20		0.0000	V
BASE-21		0.0003	V
BASE-22		0.0000	V
BASE-23		0.0003	V
BASE-24		0.0000	V
BASE-25		0.0000	V
BASE-26		0.0000	V
BASE-27		0.0000	V
BASE-28		0.0000	V
BASE-29		0.0000	V
BASE-30		0.0000	V
BASE-31	CTR1	0.0000	cps
BASE-32	CTR2	0.0000	cps
BASE-33	CTR3	1001.8360	cps
BASE-34	CTR4	1001.8360	cps
DACE 25		99 9876	chs

Fig. E.5 CYSTD Low Values

<u>Close All</u> in acquisition software and Turn Interface Power "OFF"

Halliburton Tension Test

Select Utilities -> Edit Logging Service Details Select the NONE Service Click on "Add -> Control. Scroll down the dropdown Control key word list and select LTCALHI. Click [OK] and save the service.

Start Acquisition in the None Service

Select "Action -> Calibrate -> Surface Line Tension"

Set Low Reference Point = 0

Set High Reference Point = 3200

Click on [<<Sample] for the Tension at Low Reference

Expected value should be 1.9 ± 0.1

Select [Begin]

Surface 1	Tension Calibratio	on - 0000			
Low Referen	ce Point	[0)	lb	Accept
High Referen	ce Point	2	3200	lb	Cancel
Tension at Lo	w Reference	F	1.9464	- v	<< Sample
Fension at Hig	gh Reference	Г		V	<< Sample
Sample 8	Average Sensor Surface Tensio Tension at Hig	r (s) on Calibration _I h Reference	-		
Sensor	Instantaneous	Average	Units		
LTEN	0.2133	0.2125	V		
100% Comple	ete		Act	cept ject	

If the reading is in tolerance, click	k [Accept].			
Click on [< <sample] for="" td="" tens<="" the=""><td>sion at High Ref</td><td>erence.</td><td></td><td></td></sample]>	sion at High Ref	erence.		
Click on [Begin]	6			
Expected value should be $.22 + 0$.1.			
If the value is within tolerance, cl	ick [Accept].			
Surface Tension Calibration - 0000		×		
Low Reference Point	Ib Accept			
High Reference Point 3200	lb <u>Cancel</u>			
Tension at Low Reference		e l		
Tension at High Reference	V <	e		
F				
Sample & Average Sensor(s)	- IDI XI	_		
Surface Tension Calibration				
Tension at High Reference				
Sensor Instantaneous Average Unit	s			
LTEN 0.2133 0.2125 V				
100% Complete	Accept			
	Reject			
Typical calibration value should l	pe as follows:			
Gain = -1860 + 50	Je us follows.			
Offset = 3600 + 100				
If the calibration is within toleran	ce. click the [A	cept] to save the	e calibration	
Surface Tension Calibration - 0000		- □ ×	1	
Low Reference Paint	0	Accept		
Low Reference Point	2200 10	Cancel		
High Reference Foint	13200 10			
	1.0404	CC Sample		
Tension at Low Hererence	1.3464 V			
Tension at High Reference	JU.212400 V	< <u> v</u> sample		
	2702.2			
Gain = -1845.539 Offset = 359	2.154			
From Acquisition select "File.>	Close All" and t	urn the interface	nower OFF	
Tom requisition, select The->			Power Off.	

Fig. E.6 Halliburton Surface Tension Calibration

F. DSPAUX and SDSDSP Checks

Install DSPAUX board on extender card and connect with the DSP Board through extension cable

Turn Interface Power "ON" – Start Acquisition

Select Gamma CCL Service – Do not enable the line.

At PMON window, Click on the – Show Axis Icon Click on the Enlarge Icon until scales are as shown below

Adjust P1 on DSPAUX board to adjust the baseline to 0 volts

Fig. F.1 DSPAUX Adjustment

Close All in acquisition software and Turn Interface Power "OFF"

G. PSXD-R2 or PSXD-R7 - PRELAYS-R5 - TPSD-R6

Check PSXD.R2, C16 and C17 should be .047 uF

For Halliburton panels, check R8 being 200k ohm

Check for Jumper on CC3 between Pins 10 and 12. If no jumper, install FreePoint Board Install PSXD board on CC6 slot. Install PRELAYS board on extender card in CC2 slot. Set tool voltage Polarity to Auto – Turn Interface "**ON**"

Open Acquisition to the "None" Service Edit-Calibrations – Set TVOLT and TCURR gains to 1.0 and Offset =0

Open "Utilities" -> "Edit Logging Service Details" Click on the "None" Service Check that Line Termination Control is set to "High" and Save

Services Active None Temperature Log (Pos Temp Pulse) Gamma-CCL (Neg GR Pulse) CDL-CNL-GR Tenperature (CDL) IEL Precision Guard-SP	None Presentation prs.prs Title Image: compare the second	Other Zero point <bottom of="" string=""> sgs from this service</bottom>
3 Am Caliper-GR Comprobe Temp/CCL with noise Noise Amplitude DIL-GR NP 3 ARM CALIPER Stack SIE Cement Bond 1x1 Version 4 Guardian HSTP-C Probe Pioneer Full Stack Vulcan Tension Radioactive Tracer	ine Termination	
Radioactive Tracer Complete String	Sensors	Tools
Disabled	LTEN=BASE,LTEN.4 LSPD=BASE TCURR=BASE,TCURR,4 TVOLT=BASE,TVOLT,4 ADPTH=BASE ELTIM=BASE	Tool1=STD

Fig. G.1 Line Termination Control

On PRELAYS board measure 300 ohms between pin 5 and pin 26.

Halliburton panels should read 150 Ohms

Edit "Controls" set Line Termination to "Low" – SAVE Reload "None Service"

On PRELAYS board measure 150 ohms between pin 5 and pin 26

Halliburton panels should read 1.9 Ohms.

Edit "Controls" set Line Termination to "High" – SAVE Reload "None Service"

On PRELAYS board measure 300 ohms between pin 5 and pin 26.

Halliburton panels should read 150 Ohms

<u>**Close All**</u> in acquisition software and Turn Interface Power "OFF" Place PRELAYS board in CC2 slot

G 1. PSXD-R2 - PRELAYS-R5 – TPSD-R9

Turn Interface "ON" Reload "None Service" Click on "Action -> Power Control". Click on "Keep this box" to keep window open. Enable the line (Tool Voltage Polarity Switch should be in "Auto") Measure the voltage across TPSD TP1 and TP2, Adjust P2 to .80 V DC Set Software control to 0% - Adjust P6 on PSXD for 0.0 V at TPI on PSXD Set Software control to 100% - Adjust P5 on PSXD for 8.0 VDC at TPI. Adjust P3 on PSXD for 0.0 VDC on front panel voltage meter Adjust P4 on PSAUX for 0.0 milliamps on front panel current meter Adjust software control to 25% Turn "ON" Tool Power Switch – with no load Adjust P1 on TPSD.R1 board back panel for 100 VDC at line input connector Adjust P2 on PSAUX board for 100 VDC at front panel voltage meter Switch polarity to "POS" position; verify positive voltage control with knob Switch polarity to "NEG" position; verify negative voltage control with knob Turn Tool Power "OFF" Switch Polarity to "AUTO" Attach 1k-load box to line input Turn Tool Power "ON" Adjust Software control for 100 VDC at front panel voltage meter Close to 30.0% Adjust P1 on PSXD board for 100 milliamps at front panel current meter

Edit Calibrations TVOLT / TCURR. Set Gain =1 and Offset =0
Set Software control to 100%
Verify Maximum voltage of approximately 275 VDC @ 275 ma to 300VDC @ 300 ma
Set Software control to 0%, disconnect load box
Attached 100 ohms load resistor to input line
Set Software control to 100% for approximately 48 V DC @ 480 mas Max.
Check both polarities (Positive and Negative)
Adjust Software control for 40Vdc @ 400 ma at front panel voltage meter
Check both polarities (Positive and Negative).
Set Software control 0% and Switch polarity to "POS" position
Set positive voltage with knob close to 3.3 for 40Vdc @ 400 ma leave test one hour.
Switch polarity to "NEG" position.
Set negative voltage and current (if computer is to be shipped with system)
Close All in acquisition software and Turn Interface Power "OFF"

G 2. PSXD-R7 and TPSD-R9

Start acquisition and start the PSXD PSAUX setup service. Place tool Polarity switch in AUTO. Click on "Action -> Power Control", Click check "Keep this box open"

"Click -> Open Configuration" and set all values to 400 and ramp time to .3 then click [Apply].

Enable		17.9	۷Г	0.0	0.0	īΝ
Enable		0.6	mΑ	•		400 V
Polarity	-					
Positive						
I Negative					4	
Close Con	figuration			-	-	0 \
Keep this bo:	•			NEG	POS	
-Negative Powe	er Control	S	Posit	ive Powe	r Control	-
Current Limit	400	mΑ	Currer	nt Limit 🏼	400	mΑ
Max. Current	400	mΑ	Max. I	Current	400	mΑ
Max.Volt	400.0	۷	Max.V	′olt	400.0	۷
Ramp Time	0.3	sec	Ramp	Time	0.3	sec
Allow instant	voltage					
	Å =	olu	1 0-	nool		

Fig. G2.1 Power Control Configuration

Set Software control to 0% Enable line but do not turn on Tool Power Switch On TPSD R9.1 adjust P2 to .80vdc between TP1 and TP2 Adjust VZero Slider for 000 volts on the front panel Adjust IZero Slider for 000 ma on the front panel Adjust VZeroBias Slider for 0.000vdc on PSXD TP3 (<u>+</u> -002V) Adjust Software control for 100vdc and check PSXD TP3 for 2.00vdc (<u>+</u>.01vdc) Turn on the Tool Power switch and adjust P1 on TPSD board for 100vdc on the rear panel line connector. Adjust VSetPoint Slider for 100v on the front panel

Switch Polarity switch to POS and verify POS voltage control

Switch Polarity switch to NEG and verify NEG voltage control

Return Polarity switch to Auto and connect 1Kohm load.

Adjust software for 100vdc on the front panel meter and adjust ISetPoint slider for 100ma on front panel.

From Acquisition Click on Edit -> Device Configuration -> SDSTIP

Click on [Save Settings] to save current PSXD settings to the EPROM on the PSXD board.

Click on the red Windows Close button to close the PSAux Setup window.

Calibrate the Voltage and current at 0vdc at 0ma and 100vdc at 100ma. ** This step is important since these values are stored on the EPROM of the PSXD board and are used when a service is loaded. **

Verify that the gains for TVOLT and TCURR are approximately 100 and the offsets are approximately 0

Tool Voltage Low Reference	0	V	Accept
fool Voltage High Reference	100	v	Cancel
fool Current Low Reference	0	mA	
fool Current High Reference	100	mA	
Tool Voltage Low Reference Reading	0.0117798	v	Care Comple
Fool Current Low Reference Reading	0.0200958	V	<< oanpie
Tool Voltage High Reference Reading	1.01573	ī v	CC Sample
Tool Current High Reference Reading	1.01556	V	

Fig. G2.2 Power Calabration

Check for voltage and current max near 250 volts @ 250 ma. Attach a 100ohm load and verify a current limit of near 400ma. Set software controls to 0 Volts and switch polarity to "POS" position Set positive voltage with knob close to 3.3 for 40 VDC @ 400 ma and test for 1 hour Monitor Sensors – Check that TVOLT=.4 and TCURR=4.0

Baker Hughes Panel Check - TPSD PFC Current Limit

Normal operation of the panel is with the PFC Current Limit Switch in the up position. With the switch in the down position, Check that the PFC Current Limit light comes on. Attach a 1k Ohm dummy load to line input of the panel. Enable line and check for current limit at 100 ma (+ 5 ma)

H. ANASW-R17

Open Utilities -> Edit Logging Service Details Click on the "None" Service. Check that the SDSTIP device has SPKRVOL enabled.

Fig. H.1 Service Editor

Click on Add -> Control. Select HWFilter=Off. Click [OK]

Control key word	=	Co	ntrol value	
HWFilter	•	Off		•

Fig. H.2 Service Editor Add Control

Save the service. Turn Interface "ON", and Tool Power "OFF" Load the "None" Service. Click on Action -> Power Control -> Enable Attach function generator to line-input Apply 1 kHz, 1V peak to peak at ANASW-TP-1 Check 1Vpp @ 1 KHz at TP1and TP2 Check Audio Speaker output and Speaker Volume slider control. In the Service Editor, Change the HWFilter=ON or High Save the edited service and restart the "None" service in Acquisition Apply 1 kHz, 1V peak to peak at ANASW-TP-1 Place the oscilloscope test lead on test point 2 and reduce the frequency until you reach .5V p-p, the frequency should be about 375 Hz Repeat test while setting HWFilter to Med and Low. The .5V p-p point should be 250Hz and 100Hz respectively. With the HWFilter in either On, High, Med or Low confirm that the Active CCL works. In the Service Editor, Change the HWFilter=OFF Save the edited service.

Well Head Pressure Checks

Attach Simulator Box Tension connector to WHP1 connector. From Acquisition click on Monitor -> Devices -> Base. Check that BASE-9 reads \sim 1.0 V at low tension setting and \sim 5.0 V at high tension setting.

Move the tension connector to WHP2 connector. Check that Base-10 reads \sim 1.0 V at low tension setting and \sim 5.0 V at high tension setting.

From Acquisition, Click on File -> Close All

Baker Hughes Panel Checks – Panel Type CBHA

AUX5 Inputs

Connect DB-9 Connector to AUX5 Input and connect to simulator box. (Pin 2 is signal and Pin 3 is Ground or shield)

Using the Service Editor, Copy the Temperature Log (Neg Temp Pulse) service and rename to Baker Test.

Click on Add -> Control. Select Control Key Word "PFCInput" with the value "Yes"

Start the simulator and load "Gamma Ray – Temp – CCL.sim"

Start a log pass and note response of Gamma, Temp, and CCL

I. CCLVF-R2 CHECKLIST

Install CCL board Turn Interface **"ON"** and TOOL POWER **OFF** Attach function generator to line in Start Acquisition and Load CCL Service – "Collars" Select -> Action -.Power Control ->Enable Adjust function generator to apply 2 Hz, 1 volt peak to peak signal at ANASW-TP-1 Set CCL slider to maximum. Edit calibration set Gain =1 and Offset =0 Start a log pass with scales set from –10 to 10 Check for CCL Gain slider bar control Check for cut-off frequency of 10 Hz

Disable line and connect the function generator to the Passive CCL input Go to Utilities -> Edit Logging service details Check that the "Shooting Collars" service has the following Controls CCLInput=Passive CCLFilterFq=10 Start Acquisition and load "Shooting Collars" service Start a log pass with scales set from -10 to 10 Check the signal should be -9 to 9 on the Log Check that the CCL Gain slider responds Check for frequency cut off starting at 10 Hz

Fig. I.2 Sample Log Shooting Collars Service

Close All in acquisition software and Turn Interface Power "OFF"

Ji. CBL1 R6 and CBL02

On CBL02_14 check J2 jumper should be on top (1-2) Install both CBL boards – CBL1D-R6 and CBL02-14 Attach function generator to line Load CBL1-Test service and enable the line Apply 1 KHz 0.5vpp sine wave to ANASW TP1 Set Panel Controls and SDS TIP as follows: Click Edit -> Device Configuration -> SDSTIP For each of Sonic, Sync, and Aux – Set Gain, Q, Fc, and Highpass as shown Set all Gain slider bars to maximum at 255

Fig. Ji.1 CBL1-Test Service 1Khz .5Vpp

Set the Panel Controls to 125 and verify that the signal size decreases to one half as shown in the following

Fig. Ji.2 CBL1-Test Service 1Khz .5Vpp 50% Panel Control

Set the Panel Controls to 25 and verify the following

Fig. Ji.3 CBL1-Test Service 1Khz .5Vpp 25% Panel Control

Change the input frequency to 2 KHz, Set the Panel Controls to Max, and verify the following:

Fig. Ji.4 CBL1-Test Service 2Khz .5Vpp

Change the input frequency to 500 Hz, and verify the following;

Fig. Ji.5 CBL1-Test Service 500hz .5Vpp

Change the input frequency to 1 KHz, Set the SDS TIP, and verify the following:

Fig. Ji.6 CBL1-Test Service 1Khz .5Vpp band Pass

Change the input frequency to 2 KHz, and verify the following:

Fig. Ji.7 CBL1-Test Service 2Khz .5Vpp band Pass

Set the SDS TIP Panel and verify the following:

Change the input frequency to 200 Hz, and verify the following:

Fig. Ji.8 CBL1-Test Service 200 hz .5Vpp Band Pass

Change the input frequency to 15 KHz, Set the SDSTIP Panel, and verify the following:

Fig. Ji.9 CBL1-Test Service 15 khz .5Vpp

Change the input frequency to 20 KHz

Fig. Ji.10 CBL1-Test Service 20 khz .5Vpp

Change the input frequency to 5 KHz

Fig. Ji.11 CBL1-Test Service 5 khz .5Vpp

Panel Controls SDS Tool Interface Panel Configuration X Q Gain Fc Max Max Max BandPass ? 0.10 2.00 15000 Sonic C **HighPass** 0 BandPass ? 0.10 2.00 15000 Sync HighPass BandPass 15000 ? 0.02 2.00 Aux C HighPass 0 Min Min Min **Pre-Filter Setting** ---255 255 255 Aux Gain Sonic Sync Apply Settings Cancel OK Gain Gain ₩₩¥F3FT Signal - D × | 🌇 🔍 • 🔍 • 🔨 • 🔛 • | 🐺 🌇 🍺 🛷 | 7 - ? $\langle - \rightarrow \leftrightarrow \rangle \prec \diamond \forall$ +2.50 +2.50 +2.50WVF3FT WVFCAL WVFSYNC +2.00 +2.00 +2.00 +1.50 +1.50 +1.50 +1.00 +1.00 +1.00 +0.50 +0.50 +0.50 +0.00 +0.00 +0.00 3141141111 -0.50 -0.50 -0.50 -1.00 -1.00 -1.00 -1.50 -1.50 -1.50 -2.00 -2.00 -2.00 -2.50 -2.50 2.50 0.0 1500.0 0.0 1500.0 0.0 15000.0 134 usec 0.44 V 174 usec 1.35 V 0.43 V 29/s 28/s 28/s TT Gate 104 - 174 (70) 0 TT Gate 100 - 120 (20) 0 TT Gate 126 - 414 (288) 43

Change the input frequency to 15 KHz, set the SDS TIP, and verify the following:

Fig. Ji.12 CBL1-Test Service 15 khz .5Vpp Band Pass

Change the input frequency to 30 KHz, and verify the following:

Fig. Ji.13 CBL1-Test Service 30 khz .5Vpp Band Pass

Fig. Ji.14 CBL1-Test Service 5 khz .5Vpp Band Pass

Change the input Frequency to 1 KHz, set the SDS TIP, and verify the following:

Fig. Ji.15 CBL1-Test Service 1Khz .5Vpp

Set the SDSTIP Panel, and verify the Following:

Fig. Ji.16 CBL1-Test Service 1Khz .5Vpp Pre Filter Setting 8

Jii. CBL1 R13 and CBL02

On CBL02_14 check J2 jumper should be on top (1-2) Install both CBL boards – CBL1D-R13 and CBL02-14 Attach function generator to line Load "CBL1 Test1"- service and enable the line Apply 1 KHz 500mv pp sine wave measured at the ANASW TP1 Set Panel Controls and SDS TIP as follows:

Click Edit -> Device Configuration -> SDSTIP For each of Sonic and Sync – Set Gain, Q, Fc, and High Pass as shown

Set all Gain slider bars to maximum at 255

Fig. Jii.1 CBL1 Test1 Service 1Khz 500mv pp

Start a time Recording. Slowly reduce the Sync Gain slider to 0 and back up to 255 verify the output.

M orthonit	「「「「「」」」「「」」」」」」
Pite Options Ent Annue Turk Dispace	
# + 0 # (I	
forte Gain	Sorve Gain
Canty Canada and Canada	Presc(provide) (1300"/ heaps)

Fig Jii.2 Sync Slider

Slowly reduce the Sonic Gain Slider to 0 and back up to 255 verify output.

Fig Jii.3 Sonic Gain Slider

On the SDS Tool Interface window put a check in the Sonic Pre-Filter Check box and then uncheck.

ionic	Gain Q 2 0.10 1.0	Fc 00 1000	C BandPass HighPass
Sync _	0.10 1.1	00 1000	← BandPass ● HighPass
AUX	I Stage 1 I Sonic Pre-	Filter	🗖 Stage 3

2 + 0 6 ()		
Tric Can	Involae	

Fig Jii.4 Sonic Pre Filter Radio Button

and you be a factor from the second of the	
Time San	Servit Stein
udy	(2007.73) (2007.73

Adjust the frequency output from 200 Hz to 2k Hz and then return to 1k Hz.

Fig Jii.5 200-2k Hz frequency sweep Q=1 High Pass

Change to the Band Pass radio button and adjust the frequency output from 200 Hz to 2k Hz and then return to 1k Hz.

SDS Tool Interface Panel Configuration		
Gain Q Fc Gain BandPass Sonic ? 0.10 1.00 1000 C HighPass		
Sync ? 0.10 1.00 1000 C HighPass		
AUX Stage 1 Stage 2 Stage 3		
Apply Settings Cancel OK		
N without a	122110	(E) (D
S + D & II		
Rote Can	Ener flate	}
Nexty Control of the	Productor 10	RT/Nort

Fig Jii.6 200-2k Hz frequency sweep Q=1 Band Pass

Change the Radio buttons back to High pass and change the Q to 2.00. Once again slowly change the frequency from 2—to 2k hz and back to 1k hz.

Sonic	Gain ? 0.10	Q 2.00	Fc 1000	 BandPass HighPass
Sync _	? 0.10	2.00	1000	C BandPass
AUX	☐ Stage ☐ Sonic	1 Pre-Filte	' Stage 2 r	☐ Stage 3

Fig Jii.7 200-2k Hz frequency sweep Q=2 High Pass

Change the Radio buttons to Band pass. Once again slowly change the frequency from 2—to 2k hz and back to 1k hz.

ionic ?	0.10	2.00	1000	BandPass HighPass
Sync ?	0.10	2.00	1000	BandPass HighPass
AUX	□ Stage 1 □ Sonic Pr	r⊟ S ne-Filter	tage 2 🛛 🛛	Stage 3

Ryle Zan	line we	

Fig Jii.8 200-2k Hz frequency sweep Q=2 Band Pass

Apply 15k Hz and adjust the Fc to 15000 for both Sonic and Sync inputs. Slowly sweep to 5k Hz to 20k Hz and back to 15k Hz.

Sonic ?	Gain Q	Fc	BandPass
	7	•	HighPass
Sync ?	0.10 2.00	15000	BandPass <mark>HighPass</mark>
AUX	🗖 Stage 1 🗖	Stage 2 🗖	Stage 3
	☐ Sonic Pre-Filte	r	

No Gales IX Anno Not. Training		
terclas	tavrian	

Fig Jii.9 5k -20k Hz frequency sweep Q=2 High Pass

Change to Band pass and slowly sweep to 500 Hz to 20k Hz and back to 15k Hz.

Byte Sam		Burec Gam	
(
	X		

Fig Jii.10 5k -20k Hz frequency sweep Q=2 Band Pass

Return the SDS Tool Interface Panel Configuration to its original state.

Sonic _	Gain Q ? 0.10 1.00	Fc 1000	 BandPass HighPass
Sync _	? 0.10 1.00	1000	C BandPass G HighPass
AUX	Stage 1 Sonic Pre-Filter	Stage 2	Г Stage 3
_	Sonic Pre-Filter		

Fig Jii.11 Default settings

.

All Time recordings may be done as one complete log, separate passes were used for demonstration <u>purposes</u>.

CBL1 R13 Aux Chanel test

Close the CB1 Test1 service and open the CBL1 Test2 Service. Enable the wireline and adjust the signal at the ANASW TP1 for 200mv @ 20k Hz

Put a check in all three Stage radio buttons, Start a Time log and slowly move the slider from max to min and back to max.

Sonic ?	Gain Q	Fc C BandPa	155 55
Sync _?		C BandPa	221 22
AUX	Stage 1	Stage 2 🔽 Stage 3	

Spine bit Attac Last Separat			
- Vali	Ave Gelt		
		3	

Fig Jii.12 Slider Sweep

Start a time drive and sweep the frequency input from 2kHz to 100kHz. The output should resemble the log below.

lptions Edit Action Tools Unpause						
C 🖉 🖉 🕅						
		Aux Gain				
				1		
				X		
					20 kHz @ 200mv p-p	
				1		
				1		
		_		1		
100101 0000				+		

Fig Jii.13 Frequency Sweep 2 kHz -100 kHz

Start a time log and enable the Stage radio buttons in sequence to cover all 8 options remembering to Apply between each change

SDS Tool Inter	face Panel Conf	iguration				
Sonic 7	Gain Q	Fc	C BandPass C HighPass	Stage 1	Stage 2	Stage 3
Sync			- C BandPass C HighPass	X Y	X X	X X
AUX	Stage 1 Sonic Pre-Filt	Stage 2	<mark>∏ S</mark> tage 3	X Y	Y Y	X X
	Apply Settings	Ca	ncel OK	Y Y	× X Y	Y Y Y

Fig Jii.14 Stage settings

Your output should resemble the Log.

K. SIE 1x1 and CSSM 3 1/8 Bond

Load SIE1x1 service from simulator box

Select the "SIE cement Bond 1x1", and Enable the Line

Start Simulator

Check travel time- check invert of signals with tool editor

Set the panel control and SDS Tool Interface Panel Record at least 200 ft of a log pass

Fig. K.1 SIE 1x1 Bond Signal

Select service CSSM 3 1/8 RBT medium to long lines Open the simulator program and load the tool css25.sim

SIM		
Load	1-	I - Max.
	-	- 75 (
Start Stop		- 50
	-	- 25
	j_ Gain 9	- Min.
Open	Gain 5	? ×
Look in: 🗀 Bin32		* 📰 •
1x2tek.sim	CSS-1-11-16-SCBL.sim	🛅 Gamma-Ray
3506.sim	CSS-3-25-SCBL-25K-Line.sim	gear64us.s
Computalog-MIT-55.sim	i css_slim.sim	GRSPAN19
copcss.sim	🖬 eli.sim	grtemp.sim
🔤 css25.sim	👼 Gamma-Ray-Temp.sim	grtempccl.s
4		F
File name: css25.sim		Open
Files of type: SIM files (*.sim)		Cancel

Fig. K.2 Load CSS Sim

Enable the line, and Start Simulator

Adjust Pulse Monitor PMON, and Set the panel control and SDS Tool Interface Panel Set the following values simulator at - 45 ft/m, depth 8000 ft and record up for at least 4 hours.

Panel	Conl	trols						SDS Tool	Inter	face Par	nel Conl			×
Мах	•	Мах	•	Мах	-	Мах	-	Sonic	?	Gain 1.00	Q 2.00	Fc 6000	 BandF HighP 	Pass Pass
								Sync	?	0.10	0.40	69	⊂ BandF ⊙ HighP	ass ass
								Aux	?	0.05	0.80	10000	 BandF HighP 	ass ass
Min	-	Min	•	Min	•	Min	-	Pre-Filt	er Settin	ng	0			
3 Anal Gai	og n	5 Sy Ga	8 nc ain	5 Aux	7 Gain	2' Sor Ga	1 nic iin		A	pply Setti	ngs	Car	ncel	ок
TE	L Th	reshol	d											- 0 >
- 13	?		• •	- 9	• 1	∧ - 8	· •	•2						
TEL									L					
								2/s						5

Fig. k.3 CSS Bond Signal

Check for readings on CCL – Travel time –Err count – Gamma ray

On - Monitor – Devices – SDSDSP

Device:	SDSDSP		<u>_ ×</u>				
Source	Name	Value	Units				
DSP-6	TEL1	0.0000					
DSP-7	TEL2	12.0000					
DSP-8	TEL3	0.0000					
DSP-9	TEL4	0.0000					
DSP-10	TEL5	7785.0000					
DSP-11	TEL6	12341.0000					
DSP-12	TEL7	12019.0000					
DSP-13	TEL8	2029.0000					
DSP-14	TEL9	-32768.0000					
DSP-15	TEL10	-32756.0000					
DSP-16	CCL1	7785.0000					
DSP-17	ErrCnt	0.0000					
DSP-18	ErrCode	0.0000					

Fig. K.4 CSS Log and DSP Signals

L. AUDIO

Adjust P6 so that output of U9 is + 7.5 volts D.C.

Adjust P5 so that output of U8 is -7.5 volts D.C.

With the power supply disabled adjust P8 for zero offset on TP4

With signal generator connected to "Line in" at 1 kHz, apply voltage to read 10 volts Peak-to-peak at pin 5

Select the NOISE LOG service and Enable the Line

On the Audio board, Place scope probe at TP1 and adjust P1 for 2.5 volts peak to peak

Ground input (at Line in) and adjust P8 for zero offset at TP4. Check offsets at TP2 and TP3

Adjust signal generator so that signal at TP1 is 0.500 volts peak-to-peak Place scope at TP2 and adjust P2 for 5 volts peak-to-peak output Adjust signal generator so that signal at TP2 is 0.500 volts peak-to-peak Place scope probe at TP3 and adjust P3 for 5 volts peak-to-peak output Adjust signal generator so that signal at TP3 is 0.500 volts peak-to-peak Place scope at TP4 and adjust P4 for 5 volts peak-to-peak output Select [Start Sampling]

Fig. L.1 .5vpp 1 khz @ TP3

Set Generator 6 KHz

Fig. L.2 .5vpp 6 khz @ TP3

Set Generator 1 KHz @ 250 mv peak-to-peak at Pin 5 the Audio Board

Fig. L.3 1 KHz @ 250 mvpp at Pin 5 the Audio Board

Set Generator 1 KHz @ 1.5V peak-to-peak at Pin 5 the Audio Board

Fig. L.4 1 KHz @ 1.5 vpp at Pin 5 the Audio Board

Set Generator 1 KHz @ 10V peak-to-peak at Pin 5 the Audio Board

Fig. L.4 1 KHz @ 10vpp at Pin 5 the Audio Board

Noise Logging	×		
100 1000 10000	Stop Sampling	File Service Action Edit	Monitor
	Record Station	Service: Noise Log	
Inst FET	Survey Manager	Database: Dataset:	
line in the second seco	Settings	Realtime Acquisition Mo	de
	Record Soundfile	RANGE1 Signal	
Avg FFT	RANGE4	Source Options Next Pre	w << >> <=> >-<
	8809.77 mv p-p		
600 Hz	8809.73 mvp-p	26/s	24/s
	8810.19 mvp-p		RANGE4
	. 8809.33 mvp-p	24/5	24/8
4000 Hz	8810.79 mvpp 8295.41 mvpp	10 vpp @ 6 H	Shz input pint 5

Set Generator 10 KHz @ 10V peak-to-peak at Pin 5 the Audio Board

Fig. L.4 10 KHz @ 10vpp at Pin 5 the Audio Board

Apply 1 kHz, .5V peak to peak at ANASW-TP-1 Check 12V peak to peak at TP-3 Connect the speaker to Audio out Increase and decrease the volume with the slider speaker control

M. APPLIED FREEPOINT

Setup Freepoint tool to run through the shop line Tool Power Switch Must be ON Select Service /Freepoint Applied Select [Setup] Set in Raw reading = 10

Freepoin 7	
Setup	100 %
Start Log	75 %
Hun Station Manager	50 %
Torque C Stretch	
50%	25 %
50%	
raw: 10.00 v	<u>۱</u> %
Freepoint Setup	×
Select a setup: Heavy Drill Pipe	•
100% movement is raw reading of: 20	
Log samples per second: 10	
Set Tool Aut	o Zero
Zero:	Þ

Fig. M.1 Freepoint

Click [Set Tool]	
Freepoint	_ <u> </u>
Setup	100 %
Start Log	75 %
Run Station Manager	50 %
14%	25 %
raw: 1.43 v	0%
Freepoint Setup	×
Select a setup: Tubing	•
100% movement is raw reading of:	1
Log samples per second: [5	
Set Tool A	uto Zero
Zero:	Þ
Clamp output (0% to 100%)	Close

Fig. M.2 Freepoint Adjustment

Make sure that the Set Power is reaching the tool

After setting the tool Adjust P1 so that the gauge indicator zeros in the middle Select [Set Tool] once more and check that gauge returns to previous position.

Click [Start Log] and record a pass. While recording adjust the torque o the tool to indicate change as shown.

Fig. M.3 Freepoint Log

N. TELA

Check the Capacitor C24 has been replaced by a jumper. Check the jumper on K1 (12-14) and Install the TELA board.

Turn Interface "**ON**", Power Control Enable, and TOOL POWER "**OFF**" Load TELA-TEST USB PANEL Service, and Enable line Check the Signal in TP7 (IN)

Fig. N.1 TELA Signal

Check the Signal in TP6 (OUT) and @ LINE connector on Rear of the Panel

O. MTT

Select Computalog MTT/Caliper Action/Power Control/Enable Load simulator mttair.sim Select MTT / Caliper service, enable line power and adjust discriminators. Place scope probe at TP2 and adjust P1 to 3.5 Volts Peak to Peak

Fig. O.1 MTT Signal 3.5 Vpp 5DS Tool Interface Panel Configuration X --Max Max Gain Q Fc C BandPass Sonic C HighPass C BandPass ? 0.10 0.50 69 Sync 2 HighPass C BandPass Aux C HighPass Min Min -Pre-Filter Setting 8 -0 97 Cancel 0K Apply Settings CCL Gain Sync Sensors - U × LSPD 17.000 ft/min [DAMUPCI-36] LTEN [DAMUPCI-7] 5.066 V [DAMUPCI-1] TCURR 0.009 V [DAMUPCI-2] 0.005 V TVOLT 3581.010 sec [DAMUPCI-37] ELTIM [DAMUPCI-38] ADPTH 20997.308 ft [DAMUPCI-7] LTEN 5.066 V [DAMUPCI-7] 5.066 V LTEN MTT [DAMUPCI-5] 0.008 V CCL IDAMUPCI-31 0.013 V - 0 × Outputs Name Source Value Units LTEN [STD] 9521.6631 ΙЬ TCURR [STD] 0.0082 mA TVOLT [STD] 0.0070 ٧ ELTIM [STD] 3557.1201 sec ADPTH [STD] 20997.1172 ft 9521.6631 LTENRT [STD] Ь DLTENRT -1.4025 [STD] Ь HVOLTA [STD] 0.0066 ۷ MTT [MTT] 0.0024 in CCL [CCL] 0.0143 PMON Threshold _ 🗆 × Source Options Next Prev << >> $\langle = \rangle$ PMON **A** - | - | 2/s ÷ -

Adjust P3 for 0.0 volt offset at TP4. Monitor the output window for MTT as close to 0 inch and 0 volt on sensor window.

MTT Calibra	tion - SDSDEM	D			_ 🗆 🗙			
Low Reference P	'oint		0	in	Accept			
High Reference F	Point		1.85	in	Cancel			
Reading at Low F	Reference		0.0083252	v	<< Sample			
Reading at High F	Reference			V	<< Sample			
📑 Sample & A	verage Senso	·(s)	_ [IX				
	MTT Cali	bration						
	Reading at Low Reference							
Sensor	Instantaneous	Average	Units					
MTT	0.0134	0.0079	V					
			Acce	pt				
100% Complete			Reje	ct				

Fig. O.2 MTT Calibration

Calibrate MTT. Enter 0 inch for low reference point, click sample, begin, and accept buttons to finish the first part of calibration process.

Load simulator mtt55.sim, and Start simulator

Adjust P2 until 1.85 Volts is read at sensor window or 1.85 inches at sensor window.

LYSN [DAMUPCI-7] 5.070 V LTEN [DAMUPCI-7] 5.070 V MTT [DAMUPCI-5] 1.858 V CCL [DAMUPCI-3] 0.010 V CCL [DAMUPCI-3] 0.010 V	
Outputs	×
Name Source Value Units	-
TCURR [STD] 0.0098 mA	
TVOLT [STD] 0.0067 V	_
ELTIM [STD] 4249.1699 sec	
ADPTH [STD] 21192.6250 ft	
LTENRT [STD] 9522.3643 lb	
DLTENRT [STD] -1.4025 lb	
HVOLTA [STD] 0.0062 V	
MTT [MTT] 1.8501 in	
CCL [CCL] 0.0110	
CCLRT [CCL] 0.0110	-

Fig. O.3 MTT Sensor and Output readings

MTT Calibration - SDSDEMO				Panel Controls				
Low Reference Point	0	ir	n [Accept	Mau		May A	
High Reference Point	1.8	35 ir	n 🗌	Cancel	max		max	
	_							
Reading at Low Reference	0.0	00793762	<u> </u>	<< Sample				
Reading at High Reference	1	V		<< sample				
					Min	Ţ	Min 🖕	d –
PMON Threshold				- - ×	1 o		115	1
Source Options Next Pr	ev	4	<< >>	<=> >-<	CCL 0	àain	Sync	
PMON	0				ļi —		Gain	
		~	A					
	-1 <u> </u>		\square					
	<u> </u>		′ {{					
	v			• •				
	2/s			+ -				
5IM : File mtt55.sim, 5	uS sampling						-	
Load			1.1	- MaxS	peed-	- [Close	
			•	- 75 C	High	1.	- Tensio	
Start Stop			+-	- 50 🕑	Low		 High 	1
			·	- 25 D	irection	٦	C Low	6
				- Min.	Down			
Sample & Average Se	nsor(s)		× spe	ed 📄	001111		Conne	ct
MTT	Calibration							
Reading a	t High Reference							
Sensor Instantane	ous Average	Units						
MTT 1.8417	1.8569	V						
MTT 1.8417	1.8569	V						
MTT 1.8417	1.8569	V	1					

Fig. O.4 MTT Calibrations
Calibrate MTT. Enter 1.85 in for high reference point. Click sample, begin, and accept buttons to finish the calibration process

MTT Calibration - SDSDE	MO		_ 🗆 X
Low Reference Point	0	in	Accept
High Reference Point	1.85	in	Lancel
Reading at Low Reference	0.00793762	V	<< Sample
Reading at High Reference	1.85692	V	<< Sample
Gain= 1.001	Offset= -0.008		
J			

At this point the MTT should read as 1.85 volts on sensor window and 1.85 inches on monitor window

Sensors LSPD LTEN TCURR TVOLT ELTIM APPTH LYEN LTEN MTT CCL CCL	[DAMUPO [DAMUPO [DAMUPO [DAMUPO [DAMUPO [DAMUPO [DAMUPO [DAMUPO [DAMUPO [DAMUPO [DAMUPO	CI-36] CI-7] CI-2] CI-37] CI-38] CI-7] CI-7] CI-7] CI-7] CI-3] CI-3]	4 21	17.000 5.070 0.008 0.004 1272.500 192.650 5.070 5.070 1.858 0.010 0.010	L□× ft/min V V V Sec ft V V V V V V
🔜 Outputs					- O ×
Name	Source	Value	Units		
TCURR	[STD]	0.0098	mA		
TVOLT	[STD]	0.0067	٧		
ELTIM	[STD]	4249.1699	sec		
ADPTH	[STD]	21192.6250	ft		
LTENRT	[STD]	9522.3643	Ь		
DLTENRT	[STD]	-1.4025	Ь		
HVOLTA	[STD]	0.0062	V		
MTT	[MTT]	1.8501	in		
CCL	[CCL]	0.0110			
LCCIRT		0.0110			

Fig. 0.5 Calibrated MTT Values

Select simulator and Load simulator mttair.sim At this point the MTT should read as 0 volt on sensor window and 0 inch on monitor window.

Fig. O.6 MTT Zero Calibration Check

P. Recorder Service

Select the Recorder service. Set the Attenuation to 0 %. Attach function generator to line and enable line. Apply a 1 KHz, 2 V P-P sine wave measured at ANASW TP1. Check that a 2 V P-P signal is in the Recorder window

Q. External Power Supplies

Halliburton External Power Supply and special notes Note the TELA board must have the high voltage 600V capacitors installed Make sure nothing is connected to the line or EXT PS connectors then turn panel on. Make sure that the panel type in the control panel is **CPFH**. Go to utilities and edit logging service details. Verify the service **External Power Test** exist "if not copy the none service as such" Verify that the following are present in the External Power Test service **Devices:** Device3=SDSTIP,4 **Controls: Over Current=2000 Over Voltage=600** External Power=YES Go to >>>Acquisition >>>Services >>> External Power Test Connect the External Power Supply to the EXT PS connector Connect the 300 ohm resistor to line out Go to >>>Acquisition >>> Action >>> Power Control >>>Enable Switch Polarity to Auto and leave the tool power switch OFF Turn on the external power supply.

Push the OUTPUT button twice.

Connect a voltmeter to the line and slowly adjust the output to 400 V DC and 1amp.

Do not leave output at 400 V for more than 1 minute, adjust the output back to zero.

Check that the front panel meters match the voltage and current applied.

Power down the external power supply and disconnect the 300ohm load.

R. RS232 and RS485

Attach the RS232 loopback jumper to the two ports.

Load the RS232 RS485 Loop Back service, vary the line speed and tine tension and check for the correct response from LtLoop, LsLoop, LtLoopBack and LsLoopBack. The LtLoop and LsLoop should be the same as line tension and line speed. The LtLoopBack LsLoopBack should be 10 times the respective value.

Set the ports as following for the RS232

SERMON	WWSA_STIP A
ASCTEL	WWSA_STIP A
SERMON2	WWSA_STIP C
ASCTEL2	WWSA_STIP C

Set the ports as follows for the RS485

SERMON	WWSA_STIP B
ASCTEL	WWSA_STIP B
SERMON2	WWSA_STIP D
ASCTEL2	WWSA_STIP D

Appendix

Fig. 1 Panel layouts